BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33411834)

  • 1. How to account for the uncertainty from standard toxicity tests in species sensitivity distributions: An example in non-target plants.
    Charles S; Wu D; Ducrot V
    PLoS One; 2021; 16(1):e0245071. PubMed ID: 33411834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical modelling of species sensitivity distribution: development and application to the case of diatoms exposed to several herbicides.
    Kon Kam King G; Larras F; Charles S; Delignette-Muller ML
    Ecotoxicol Environ Saf; 2015 Apr; 114():212-21. PubMed ID: 25656423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species Sensitivity Distribution estimation from uncertain (QSAR-based) effects data.
    Aldenberg T; Rorije E
    Altern Lab Anim; 2013 Mar; 41(1):19-31. PubMed ID: 23614542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species sensitivity distribution for pentachlorophenol to aquatic organisms based on interval ecotoxicological data.
    Zhao J; Zhang R
    Ecotoxicol Environ Saf; 2017 Nov; 145():193-199. PubMed ID: 28734222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Assessment of Vegetative and Reproductive Terrestrial Plant Species Endpoints from Exposure to Herbicides and Potential Environmental Implications: A Review.
    Christl H; Hoen T; Zumkier U
    Integr Environ Assess Manag; 2020 Mar; 16(2):166-183. PubMed ID: 31596054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOSAIC_SSD: a new web tool for species sensitivity distribution to include censored data by maximum likelihood.
    Kon Kam King G; Veber P; Charles S; Delignette-Muller ML
    Environ Toxicol Chem; 2014 Sep; 33(9):2133-9. PubMed ID: 24863265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of herbicide species sensitivity distribution using single-species algal toxicity data and information on the mode of action.
    Nagai T; Taya K
    Environ Toxicol Chem; 2015 Mar; 34(3):677-84. PubMed ID: 25475367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of assessing vegetative and generative endpoints of crop- and non- crop terrestrial plant species for non-target terrestrial plant (NTTP) regulatory testing under greenhouse conditions.
    Duffner A; Moser T; Candolfi MP
    PLoS One; 2020; 15(3):e0230155. PubMed ID: 32155231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk.
    Gottschalk F; Nowack B
    Integr Environ Assess Manag; 2013 Jan; 9(1):79-86. PubMed ID: 22745057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology.
    Fox DR
    Ecotoxicol Environ Saf; 2010 Feb; 73(2):123-31. PubMed ID: 19836077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions.
    Wigger H; Kawecki D; Nowack B; Adam V
    Integr Environ Assess Manag; 2020 Mar; 16(2):211-222. PubMed ID: 31535755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative assessment of the intrinsic sensitivity of crop species and wild plant species to plant protection products and their active substances and potential implications for the risk assessment: A literature review.
    Christl H; Morilla J; Hoen T; Zumkier U
    Integr Environ Assess Manag; 2019 Mar; 15(2):176-189. PubMed ID: 30548391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources of variability in plant toxicity testing.
    Clark J; Ortego LS; Fairbrother A
    Chemosphere; 2004 Dec; 57(11):1599-612. PubMed ID: 15519405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative sensitivity of macrophyte and algal species to herbicides and fungicides: an analysis using species sensitivity distributions.
    Giddings JM; Arts G; Hommen U
    Integr Environ Assess Manag; 2013 Apr; 9(2):308-18. PubMed ID: 23229339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of the SSD approach in scientific case studies for ecological risk assessment.
    Del Signore A; Hendriks AJ; Lenders HJ; Leuven RS; Breure AM
    Environ Toxicol Chem; 2016 Sep; 35(9):2149-61. PubMed ID: 27144499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian and time-independent species sensitivity distributions for risk assessment of chemicals.
    Grist EP; O'Hagan A; Crane M; Sorokin N; Sims I; Whitehouse P
    Environ Sci Technol; 2006 Jan; 40(1):395-401. PubMed ID: 16433377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian approach for sample size determination, illustrated with Soil Health Card data of Andhra Pradesh (India).
    Brus DJ; Kempen B; Rossiter D; Balwinder-Singh ; McDonald AJ
    Geoderma; 2022 Jan; 405():115396. PubMed ID: 34980929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making species salinity sensitivity distributions reflective of naturally occurring communities: using rapid testing and Bayesian statistics.
    Hickey GL; Kefford BJ; Dunlop JE; Craig PS
    Environ Toxicol Chem; 2008 Nov; 27(11):2403-11. PubMed ID: 18522453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving ecological risk assessment by including bioavailability into species sensitivity distributions: an example for plants exposed to nickel in soil.
    Semenzin E; Temminghoff EJ; Marcomini A
    Environ Pollut; 2007 Jul; 148(2):642-7. PubMed ID: 17240027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing Time-Resolved Species Sensitivity Distributions Using a Hierarchical Toxico-Dynamic Model.
    Kon Kam King G; Delignette-Muller ML; Kefford BJ; Piscart C; Charles S
    Environ Sci Technol; 2015 Oct; 49(20):12465-73. PubMed ID: 26406398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.