These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33411834)

  • 21. Herbicide Toxicity Testing with Non-Target Boreal Plants: The Sensitivity of Achillea millefolium L. and Chamerion angustifolium L. to Triclopyr and Imazapyr.
    Isbister KM; Lamb EG; Stewart KJ
    Environ Manage; 2017 Jul; 60(1):136-156. PubMed ID: 28424880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-dependent species sensitivity distributions.
    Fox DR; Billoir E
    Environ Toxicol Chem; 2013 Feb; 32(2):378-83. PubMed ID: 23161611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.
    Awkerman JA; Raimondo S; Jackson CR; Barron MG
    Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination effects of herbicides on plants and algae: do species and test systems matter?
    Cedergreen N; Kudsk P; Mathiassen SK; Streibig JC
    Pest Manag Sci; 2007 Mar; 63(3):282-95. PubMed ID: 17304633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures.
    Belanger S; Barron M; Craig P; Dyer S; Galay-Burgos M; Hamer M; Marshall S; Posthuma L; Raimondo S; Whitehouse P
    Integr Environ Assess Manag; 2017 Jul; 13(4):664-674. PubMed ID: 27531323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials.
    Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A
    Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. When significance becomes insignificant: Effect sizes and their uncertainties in Bayesian and frequentist frameworks as an alternative approach when analyzing ecotoxicological data.
    Feckler A; Low M; Zubrod JP; Bundschuh M
    Environ Toxicol Chem; 2018 Jul; 37(7):1949-1955. PubMed ID: 29508923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicity testing of fifteen non-crop plant species with six herbicides in a greenhouse experiment: implications for risk assessment.
    Boutin C; Elmegaard N; Kjaer C
    Ecotoxicology; 2004 May; 13(4):349-69. PubMed ID: 15344515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecological hazard assessment via species sensitivity distributions: The non-exchangeability issue.
    Migliorati S; Monti GS; Vighi M
    Biom J; 2021 Apr; 63(4):875-892. PubMed ID: 33491802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bayesian generalized log-normal model to dynamically evaluate the distribution of pesticide residues in soil associated with population health risks.
    Li Z
    Environ Int; 2018 Dec; 121(Pt 1):620-634. PubMed ID: 30312965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms.
    Princz J; Becker L; Scheffczyk A; Stephenson G; Scroggins R; Moser T; Römbke J
    Ecotoxicology; 2017 May; 26(4):471-481. PubMed ID: 28314961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of predicted no effect concentration (PNEC) for TCS to terrestrial species.
    Wang X; Zhang C; Liu Z; Wang W; Chen L
    Chemosphere; 2015 Nov; 139():428-33. PubMed ID: 26233766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The auxin herbicide mecoprop-P in new light: Filling the data gap for dicotyledonous macrophytes.
    Périllon C; Feibicke M; Sahm R; Kusebauch B; Hönemann L; Mohr S
    Environ Pollut; 2021 Mar; 272():116405. PubMed ID: 33454613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental benchmarks based on ecotoxicological assessment with planktonic species might not adequately protect benthic assemblages in lotic systems.
    Vidal T; Santos JI; Queirós L; Ré A; Abrantes N; Gonçalves FJM; Pereira JL
    Sci Total Environ; 2019 Jun; 668():1289-1297. PubMed ID: 31018468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying uncertainty in estimation of tropical arthropod species richness.
    Hamilton AJ; Basset Y; Benke KK; Grimbacher PS; Miller SE; Novotný V; Samuelson GA; Stork NE; Weiblen GD; Yen JD
    Am Nat; 2010 Jul; 176(1):90-5. PubMed ID: 20455708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Species-specific sensitivity of aquatic macrophytes towards two herbicides.
    Cedergreen N; Spliid NH; Streibig JC
    Ecotoxicol Environ Saf; 2004 Jul; 58(3):314-23. PubMed ID: 15223257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides metribuzin and metamitron.
    Brock TC; Crum SJ; Deneer JW; Heimbach F; Roijackers RM; Sinkeldam JA
    Environ Pollut; 2004 Aug; 130(3):403-26. PubMed ID: 15182972
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.