These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33412043)

  • 1. Demonstration of a GaSb/GaAs Quantum Dot Intermediate Band Solar Cell Operating at Maximum Power Point.
    Ramiro I; Villa J; Hwang J; Martin AJ; Millunchick J; Phillips J; Martí A
    Phys Rev Lett; 2020 Dec; 125(24):247703. PubMed ID: 33412043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of plasmonic quantum-dot-based intermediate band solar cells.
    Foroutan S; Baghban H
    Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In
    Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New strategies for colloidal-quantum-dot-based intermediate-band solar cells.
    Califano M; Skibinsky-Gitlin ES; Gómez-Campos FM; Rodríguez-Bolívar S
    J Chem Phys; 2019 Oct; 151(15):154101. PubMed ID: 31640383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.
    Martí A; Antolín E; Stanley CR; Farmer CD; López N; Díaz P; Cánovas E; Linares PG; Luque A
    Phys Rev Lett; 2006 Dec; 97(24):247701. PubMed ID: 17280325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells.
    Shoji Y; Tamaki R; Okada Y
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33573008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites.
    Hosokawa H; Tamaki R; Sawada T; Okonogi A; Sato H; Ogomi Y; Hayase S; Okada Y; Yano T
    Nat Commun; 2019 Jan; 10(1):43. PubMed ID: 30626874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance optimization of In(Ga)As quantum dot intermediate band solar cells.
    Yang G; Liu W; Bao Y; Chen X; Ji C; Wei B; Yang F; Wang X
    Discov Nano; 2023 Apr; 18(1):67. PubMed ID: 37382764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adiabatic two-step photoexcitation effects in intermediate-band solar cells with quantum dot-in-well structure.
    Asahi S; Kaizu T; Kita T
    Sci Rep; 2019 May; 9(1):7859. PubMed ID: 31133644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.
    Nozawa T; Takagi H; Watanabe K; Arakawa Y
    Nano Lett; 2015 Jul; 15(7):4483-7. PubMed ID: 26099362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells.
    Elsehrawy F; Niemi T; Cappelluti F
    Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
    Prado SJ; Marques GE; Alcalde AM
    J Phys Condens Matter; 2017 Nov; 29(44):445301. PubMed ID: 28799524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed balance model for intermediate band solar cells with photon conservation.
    Lin CC; Liu WL; Shih CY
    Opt Express; 2011 Aug; 19(18):16927-33. PubMed ID: 21935053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells.
    Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ
    Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells.
    Kada T; Asahi S; Kaizu T; Harada Y; Tamaki R; Okada Y; Kita T
    Sci Rep; 2017 Jul; 7(1):5865. PubMed ID: 28724895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier.
    Wei G; Forrest SR
    Nano Lett; 2007 Jan; 7(1):218-22. PubMed ID: 17212467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum efficiency of intermediate-band solar cells based on non-compensated n-p codoped TiO2.
    Wu F; Lan H; Zhang Z; Cui P
    J Chem Phys; 2012 Sep; 137(10):104702. PubMed ID: 22979881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules.
    Sogabe T; Shoji Y; Ohba M; Yoshida K; Tamaki R; Hong HF; Wu CH; Kuo CT; Tomić S; Okada Y
    Sci Rep; 2014 Apr; 4():4792. PubMed ID: 24762433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting.
    Sun B; Ouellette O; García de Arquer FP; Voznyy O; Kim Y; Wei M; Proppe AH; Saidaminov MI; Xu J; Liu M; Li P; Fan JZ; Jo JW; Tan H; Tan F; Hoogland S; Lu ZH; Kelley SO; Sargent EH
    Nat Commun; 2018 Oct; 9(1):4003. PubMed ID: 30275457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications.
    Sarkhoush M; Rasooli Saghai H; Soofi H
    Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.