These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Luminescent, Wide-Band Gap Solar Cells with a Photovoltage up to 1.75 V through a Heterostructured Light-Absorbing Layer. Zhou D; Huang J; Yan H; Zhang J; Lu L; Xu P; Li G ACS Appl Mater Interfaces; 2020 Nov; 12(45):50527-50533. PubMed ID: 33140637 [TBL] [Abstract][Full Text] [Related]
23. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter. Zhao Y; Sun Y; He Y; Yu S; Dong J Sci Rep; 2016 Nov; 6():38044. PubMed ID: 27901079 [TBL] [Abstract][Full Text] [Related]
24. Thin-film InAs/GaAs quantum dot solar cell with planar and pyramidal back reflectors. Aho T; Elsehrawy F; Tukiainen A; Ranta S; Raappana M; Isoaho R; Aho A; Hietalahti A; Cappelluti F; Guina M Appl Opt; 2020 Jul; 59(21):6304-6308. PubMed ID: 32749293 [TBL] [Abstract][Full Text] [Related]
25. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion. Erickson SD; Smith TJ; Moses LM; Watt RK; Colton JS Nanotechnology; 2015 Jan; 26(1):015703. PubMed ID: 25490522 [TBL] [Abstract][Full Text] [Related]
26. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics. Zhang N; Neo DC; Tazawa Y; Li X; Assender HE; Compton RG; Watt AA ACS Appl Mater Interfaces; 2016 Aug; 8(33):21417-22. PubMed ID: 27421066 [TBL] [Abstract][Full Text] [Related]
27. The intermediate band solar cell: progress toward the realization of an attractive concept. Luque A; Martí A Adv Mater; 2010 Jan; 22(2):160-74. PubMed ID: 20217682 [TBL] [Abstract][Full Text] [Related]
28. Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness. Abboudi H; El Ghazi H; En-Nadir R; Basyooni-M Kabatas MA; Jorio A; Zorkani I Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202559 [TBL] [Abstract][Full Text] [Related]
30. Enhanced open-circuit voltage in visible quantum dot photovoltaics by engineering of carrier-collecting electrodes. Wang X; Koleilat GI; Fischer A; Tang J; Debnath R; Levina L; Sargent EH ACS Appl Mater Interfaces; 2011 Oct; 3(10):3792-5. PubMed ID: 21936534 [TBL] [Abstract][Full Text] [Related]
31. Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. Santra PK; Kamat PV J Am Chem Soc; 2013 Jan; 135(2):877-85. PubMed ID: 23249280 [TBL] [Abstract][Full Text] [Related]
32. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control. Li W; Roelofs WS; Wienk MM; Janssen RA J Am Chem Soc; 2012 Aug; 134(33):13787-95. PubMed ID: 22812425 [TBL] [Abstract][Full Text] [Related]
33. [Three photons quantum-cutting system on the rear surface of cells to improve the efficiencies of solar cells]. Yao WT; Chen XB; Cheng HL; Zhou G; Deng ZW; Li YL; Yan DD; Peng FL Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):325-8. PubMed ID: 25970886 [TBL] [Abstract][Full Text] [Related]
34. Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells. Villanueva-Cab J; Olalde-Velasco P; Romero-Contreras A; Zhuo Z; Pan F; Rodil SE; Yang W; Pal U ACS Appl Mater Interfaces; 2018 Sep; 10(37):31374-31383. PubMed ID: 30129358 [TBL] [Abstract][Full Text] [Related]
38. An investigation of exciton behavior in type-II self-assembled GaSb/GaAs quantum dots. Qiu F; Qiu W; Li Y; Wang X; Zhang Y; Zhou X; Lv Y; Sun Y; Deng H; Hu S; Dai N; Wang C; Yang Y; Zhuang Q; Hayne M; Krier A Nanotechnology; 2016 Feb; 27(6):065602. PubMed ID: 26684716 [TBL] [Abstract][Full Text] [Related]