BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33412436)

  • 21. Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity.
    Trombitás K; Redkar A; Centner T; Wu Y; Labeit S; Granzier H
    Biophys J; 2000 Dec; 79(6):3226-34. PubMed ID: 11106626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle ankyrin repeat protein 1 (MARP1) locks titin to the sarcomeric thin filament and is a passive force regulator.
    van der Pijl RJ; van den Berg M; van de Locht M; Shen S; Bogaards SJP; Conijn S; Langlais P; Hooijman PE; Labeit S; Heunks LMA; Granzier H; Ottenheijm CAC
    J Gen Physiol; 2021 Jul; 153(7):. PubMed ID: 34152365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
    Prado LG; Makarenko I; Andresen C; Krüger M; Opitz CA; Linke WA
    J Gen Physiol; 2005 Nov; 126(5):461-80. PubMed ID: 16230467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Titin (visco-) elasticity in skeletal muscle myofibrils.
    Herzog JA; Leonard TR; Jinha A; Herzog W
    Mol Cell Biomech; 2014 Mar; 11(1):1-17. PubMed ID: 25330621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling.
    Yucesoy CA; Koopman BH; Grootenboer HJ; Huijing PA
    Biomech Model Mechanobiol; 2008 Jun; 7(3):175-89. PubMed ID: 17486381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations.
    Schappacher-Tilp G; Leonard T; Desch G; Herzog W
    PLoS Comput Biol; 2016 Jun; 12(6):e1004904. PubMed ID: 27276390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Titin stiffness modifies the force-generating region of muscle sarcomeres.
    Li Y; Lang P; Linke WA
    Sci Rep; 2016 Apr; 6():24492. PubMed ID: 27079135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions.
    Herzog W
    J Appl Physiol (1985); 2014 Jun; 116(11):1407-17. PubMed ID: 23429875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7101-5. PubMed ID: 1714586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming.
    Spierts IL; Akster HA; Granzier HL
    J Comp Physiol B; 1997 Nov; 167(8):543-51. PubMed ID: 9404015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome.
    Ottenheijm CA; Voermans NC; Hudson BD; Irving T; Stienen GJ; van Engelen BG; Granzier H
    J Appl Physiol (1985); 2012 Apr; 112(7):1157-65. PubMed ID: 22223454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium-dependent titin-thin filament interactions in muscle: observations and theory.
    Nishikawa K; Dutta S; DuVall M; Nelson B; Gage MJ; Monroy JA
    J Muscle Res Cell Motil; 2020 Mar; 41(1):125-139. PubMed ID: 31289970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments.
    Granzier HL; Irving TC
    Biophys J; 1995 Mar; 68(3):1027-44. PubMed ID: 7756523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Titin Gene and Protein Functions in Passive and Active Muscle.
    Linke WA
    Annu Rev Physiol; 2018 Feb; 80():389-411. PubMed ID: 29131758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Titin: an endosarcomeric protein that modulates myocardial stiffness in DCM.
    Wu Y; Labeit S; Lewinter MM; Granzier H
    J Card Fail; 2002 Dec; 8(6 Suppl):S276-86. PubMed ID: 12555133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The origin of passive force enhancement in skeletal muscle.
    Joumaa V; Rassier DE; Leonard TR; Herzog W
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C74-8. PubMed ID: 17928540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does partial titin degradation affect sarcomere length nonuniformities and force in active and passive myofibrils?
    Joumaa V; Bertrand F; Liu S; Poscente S; Herzog W
    Am J Physiol Cell Physiol; 2018 Sep; 315(3):C310-C318. PubMed ID: 29768046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca(2+)-dependence of diastolic properties of cardiac sarcomeres: involvement of titin.
    Stuyvers BD; Miura M; Jin JP; ter Keurs HE
    Prog Biophys Mol Biol; 1998; 69(2-3):425-43. PubMed ID: 9785949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shortening the thick filament by partial deletion of titin's C-zone alters cardiac function by reducing the operating sarcomere length range.
    Methawasin M; Farman GP; Granzier-Nakajima S; Strom J; Kiss B; Smith JE; Granzier H
    J Mol Cell Cardiol; 2022 Apr; 165():103-114. PubMed ID: 35031281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.