These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33412443)

  • 1. Mechanisms of signalling-memory governing progression through the eukaryotic cell cycle.
    Novák B; Tyson JJ
    Curr Opin Cell Biol; 2021 Apr; 69():7-16. PubMed ID: 33412443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the cell cycle: checkpoints, sizers, and timers.
    Qu Z; MacLellan WR; Weiss JN
    Biophys J; 2003 Dec; 85(6):3600-11. PubMed ID: 14645053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-cycle transitions: a common role for stoichiometric inhibitors.
    Hopkins M; Tyson JJ; Novák B
    Mol Biol Cell; 2017 Nov; 28(23):3437-3446. PubMed ID: 28931595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms creating bistable switches at cell cycle transitions.
    Verdugo A; Vinod PK; Tyson JJ; Novak B
    Open Biol; 2013 Mar; 3(3):120179. PubMed ID: 23486222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcation analysis of the regulatory modules of the mammalian G1/S transition.
    Swat M; Kel A; Herzel H
    Bioinformatics; 2004 Jul; 20(10):1506-11. PubMed ID: 15231543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition.
    Doncic A; Atay O; Valk E; Grande A; Bush A; Vasen G; Colman-Lerner A; Loog M; Skotheim JM
    Cell; 2015 Mar; 160(6):1182-95. PubMed ID: 25768911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bistable switches as integrators and actuators during cell cycle progression.
    Stallaert W; Kedziora KM; Chao HX; Purvis JE
    FEBS Lett; 2019 Oct; 593(20):2805-2816. PubMed ID: 31566708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2017 Sep; 429():204-228. PubMed ID: 28647496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting a skeleton model for the mammalian cell cycle: From bistability to Cdk oscillations and cellular heterogeneity.
    Gérard C; Gonze D; Goldbeter A
    J Theor Biol; 2019 Jan; 461():276-290. PubMed ID: 30352237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of eukaryotic DNA replication: regulation and mechanisms.
    Nasheuer HP; Smith R; Bauerschmidt C; Grosse F; Weisshart K
    Prog Nucleic Acid Res Mol Biol; 2002; 72():41-94. PubMed ID: 12206458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions.
    Tyson JJ; Novak B
    J Theor Biol; 2001 May; 210(2):249-63. PubMed ID: 11371178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1.
    Clerici M; Baldo V; Mantiero D; Lottersberger F; Lucchini G; Longhese MP
    Mol Cell Biol; 2004 Dec; 24(23):10126-44. PubMed ID: 15542824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdt1 and geminin: role during cell cycle progression and DNA damage in higher eukaryotes.
    Tada S
    Front Biosci; 2007 Jan; 12():1629-41. PubMed ID: 17127409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response.
    Xu Z; Norris D
    Genetics; 1998 Dec; 150(4):1419-28. PubMed ID: 9832520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2.
    Pomerening JR; Sontag ED; Ferrell JE
    Nat Cell Biol; 2003 Apr; 5(4):346-51. PubMed ID: 12629549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fission yeast Crb2/Chk1 pathway coordinates the DNA damage and spindle checkpoint in response to replication stress induced by topoisomerase I inhibitor.
    Collura A; Blaisonneau J; Baldacci G; Francesconi S
    Mol Cell Biol; 2005 Sep; 25(17):7889-99. PubMed ID: 16107732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Checking out the G(2)/M transition.
    Smits VA; Medema RH
    Biochim Biophys Acta; 2001 May; 1519(1-2):1-12. PubMed ID: 11406266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation for DNA replication: the key to a successful S phase.
    Limas JC; Cook JG
    FEBS Lett; 2019 Oct; 593(20):2853-2867. PubMed ID: 31556113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway.
    Taieb F; Nougayrède JP; Watrin C; Samba-Louaka A; Oswald E
    Cell Microbiol; 2006 Dec; 8(12):1910-21. PubMed ID: 16848790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase.
    Müllers E; Silva Cascales H; Jaiswal H; Saurin AT; Lindqvist A
    Cell Cycle; 2014; 13(17):2733-43. PubMed ID: 25486360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.