These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33412532)

  • 1. Palladium zero-mode waveguides for optical single-molecule detection with nanopores.
    Klughammer N; Dekker C
    Nanotechnology; 2021 Apr; 32(18):18LT01. PubMed ID: 33412532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET enhancement in aluminum zero-mode waveguides.
    de Torres J; Ghenuche P; Moparthi SB; Grigoriev V; Wenger J
    Chemphyschem; 2015 Mar; 16(4):782-8. PubMed ID: 25640052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement.
    Al Masud A; Martin WE; Moonschi FH; Park SM; Srijanto BR; Graham KR; Collier CP; Richards CI
    Nanoscale Adv; 2020 May; 2(5):1894-1903. PubMed ID: 36132495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-Guided Delivery of Single Molecules into Zero-Mode Waveguides.
    Plénat T; Yoshizawa S; Fourmy D
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30561-30566. PubMed ID: 28825461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-Mode Waveguide Nanophotonic Structures for Single Molecule Characterization.
    Crouch GM; Han D; Bohn PW
    J Phys D Appl Phys; 2018 May; 51(19):193001. PubMed ID: 34158676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides.
    Han D; Crouch GM; Fu K; Zaino Iii LP; Bohn PW
    Chem Sci; 2017 Aug; 8(8):5345-5355. PubMed ID: 28970913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold Ion Beam Milled Gold Zero-Mode Waveguides.
    Messina TC; Srijanto BR; Collier CP; Kravchenko II; Richards CI
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dark-field illumination on zero-mode waveguide/microfluidic hybrid chip reveals T4 replisomal protein interactions.
    Zhao Y; Chen D; Yue H; Spiering MM; Zhao C; Benkovic SJ; Huang TJ
    Nano Lett; 2014; 14(4):1952-60. PubMed ID: 24628474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Range Single-Molecule Förster Resonance Energy Transfer between Alexa Dyes in Zero-Mode Waveguides.
    Baibakov M; Patra S; Claude JB; Wenger J
    ACS Omega; 2020 Mar; 5(12):6947-6955. PubMed ID: 32258931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: a computational study.
    Tanii T; Akahori R; Higano S; Okubo K; Yamamoto H; Ueno T; Funatsu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012727. PubMed ID: 23944510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy.
    Chen KY; Jamiolkowski RM; Tate AM; Fiorenza SA; Pfeil SH; Goldman YE
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC).
    Elting MW; Leslie SR; Churchman LS; Korlach J; McFaul CM; Leith JS; Levene MJ; Cohen AE; Spudich JA
    Opt Express; 2013 Jan; 21(1):1189-202. PubMed ID: 23389011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations.
    Moran-Mirabal JM; Craighead HG
    Methods; 2008 Sep; 46(1):11-7. PubMed ID: 18586103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending Single-Molecule Förster Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides.
    Baibakov M; Patra S; Claude JB; Moreau A; Lumeau J; Wenger J
    ACS Nano; 2019 Jul; 13(7):8469-8480. PubMed ID: 31283186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis.
    Jamiolkowski RM; Chen KY; Fiorenza SA; Tate AM; Pfeil SH; Goldman YE
    PLoS One; 2019; 14(10):e0222964. PubMed ID: 31600217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet.
    Baibakov M; Barulin A; Roy P; Claude JB; Patra S; Wenger J
    Nanoscale Adv; 2020 Sep; 2(9):4153-4160. PubMed ID: 36132755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide.
    Zhao J; Branagan SP; Bohn PW
    Appl Spectrosc; 2012 Feb; 66(2):163-9. PubMed ID: 22449279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides.
    Martin WE; Srijanto BR; Collier CP; Vosch T; Richards CI
    J Phys Chem A; 2016 Sep; 120(34):6719-27. PubMed ID: 27499174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-mode waveguides for single-molecule analysis.
    Zhu P; Craighead HG
    Annu Rev Biophys; 2012; 41():269-93. PubMed ID: 22577821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-mode waveguides for single-molecule analysis at high concentrations.
    Levene MJ; Korlach J; Turner SW; Foquet M; Craighead HG; Webb WW
    Science; 2003 Jan; 299(5607):682-6. PubMed ID: 12560545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.