These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33412655)

  • 1. Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals.
    Shahzad Z; Rouached H; Rakha A
    Compr Rev Food Sci Food Saf; 2014 May; 13(3):329-346. PubMed ID: 33412655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies to increase the bioaccessibility and bioavailability of iron and zinc from cereal products.
    Arafsha SM; Aslam MF; Ellis PR; Latunde-Dada GO; Sharp PA
    Proc Nutr Soc; 2023 Jul; ():1-7. PubMed ID: 37395294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness.
    Dias DM; Costa NMB; Nutti MR; Tako E; Martino HSD
    Crit Rev Food Sci Nutr; 2018; 58(13):2136-2146. PubMed ID: 28414527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals.
    Garcia-Oliveira AL; Chander S; Ortiz R; Menkir A; Gedil M
    Front Plant Sci; 2018; 9():937. PubMed ID: 30013590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Approaches for Iron and Zinc Biofortification and Arsenic Decrease in Oryza sativa L. Grains.
    Viana VE; Maltzahn LE; Costa de Oliveira A; Pegoraro C
    Biol Trace Elem Res; 2022 Oct; 200(10):4505-4523. PubMed ID: 34773578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice.
    Kawakami Y; Bhullar NK
    J Integr Plant Biol; 2018 Dec; 60(12):1181-1198. PubMed ID: 30468300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineral biofortification strategies for food staples: the example of common bean.
    Blair MW
    J Agric Food Chem; 2013 Sep; 61(35):8287-94. PubMed ID: 23848266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving wheat as a source of iron and zinc for global nutrition.
    Balk J; Connorton JM; Wan Y; Lovegrove A; Moore KL; Uauy C; Sharp PA; Shewry PR
    Nutr Bull; 2019 Mar; 44(1):53-59. PubMed ID: 31007606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano Zinc-Enabled Strategies in Crops for Combatting Zinc Malnutrition in Human Health.
    Singh A; Rajput VD; Pandey D; Sharma R; Ghazaryan K; Minkina T
    Front Biosci (Landmark Ed); 2023 Aug; 28(8):158. PubMed ID: 37664935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.
    de Figueiredo MA; Boldrin PF; Hart JJ; de Andrade MJB; Guilherme LRG; Glahn RP; Li L
    Plant Physiol Biochem; 2017 Feb; 111():193-202. PubMed ID: 27940270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives.
    Shahzad R; Jamil S; Ahmad S; Nisar A; Khan S; Amina Z; Kanwal S; Aslam HMU; Gill RA; Zhou W
    Front Nutr; 2021; 8():721728. PubMed ID: 34692743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic approaches for improving grain zinc and iron content in wheat.
    Roy C; Kumar S; Ranjan RD; Kumhar SR; Govindan V
    Front Genet; 2022; 13():1045955. PubMed ID: 36437911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing micronutrient bioavailability in biofortified crops.
    Bechoff A; Dhuique-Mayer C
    Ann N Y Acad Sci; 2017 Feb; 1390(1):74-87. PubMed ID: 28009050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc biofortification of cereals: problems and solutions.
    Palmgren MG; Clemens S; Williams LE; Krämer U; Borg S; Schjørring JK; Sanders D
    Trends Plant Sci; 2008 Sep; 13(9):464-73. PubMed ID: 18701340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Could Agronomic Biofortification of Rice Be an Alternative Strategy with Higher Cost-Effectiveness for Human Iron and Zinc Deficiency in China?
    Zhang CM; Zhao WY; Gao AX; Su TT; Wang YK; Zhang YQ; Zhou XB; He XH
    Food Nutr Bull; 2018 Jun; 39(2):246-259. PubMed ID: 29281918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traditional African Dishes Prepared From Local Biofortified Varieties of Pearl Millet: Acceptability and Potential Contribution to Iron and Zinc Intakes of Burkinabe Young Children.
    Hama-Ba F; Mouquet-Rivier C; Diawara B; Weltzien E; Icard-Vernière C
    Front Nutr; 2019; 6():115. PubMed ID: 31475149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans.
    Liu D; Liu Y; Zhang W; Chen X; Zou C
    Nutrients; 2017 May; 9(5):. PubMed ID: 28481273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron, Zinc and Phytic Acid Retention of Biofortified, Low Phytic Acid, and Conventional Bean Varieties When Preparing Common Household Recipes.
    Hummel M; Talsma EF; Taleon V; Londoño L; Brychkova G; Gallego S; Raatz B; Spillane C
    Nutrients; 2020 Feb; 12(3):. PubMed ID: 32121231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health.
    Praharaj S; Skalicky M; Maitra S; Bhadra P; Shankar T; Brestic M; Hejnak V; Vachova P; Hossain A
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.