These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Predicting cancer drug response by proteomic profiling. Ma Y; Ding Z; Qian Y; Shi X; Castranova V; Harner EJ; Guo L Clin Cancer Res; 2006 Aug; 12(15):4583-9. PubMed ID: 16899605 [TBL] [Abstract][Full Text] [Related]
3. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Tolios A; De Las Rivas J; Hovig E; Trouillas P; Scorilas A; Mohr T Drug Resist Updat; 2020 Jan; 48():100662. PubMed ID: 31927437 [TBL] [Abstract][Full Text] [Related]
4. Do predictive signatures really predict response to cancer chemotherapy? Borst P; Wessels L Cell Cycle; 2010 Dec; 9(24):4836-40. PubMed ID: 21150277 [TBL] [Abstract][Full Text] [Related]
5. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data. Xu Y; Dong Q; Li F; Xu Y; Hu C; Wang J; Shang D; Zheng X; Yang H; Zhang C; Shao M; Meng M; Xiong Z; Li X; Zhang Y J Transl Med; 2019 Aug; 17(1):255. PubMed ID: 31387579 [TBL] [Abstract][Full Text] [Related]
6. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance. Choi J; Park S; Ahn J Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872 [TBL] [Abstract][Full Text] [Related]
7. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. Wang L; Li X; Zhang L; Gao Q BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489 [TBL] [Abstract][Full Text] [Related]
8. Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles. Naulaerts S; Menden MP; Ballester PJ Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32604779 [TBL] [Abstract][Full Text] [Related]
9. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS. Verkhivker GM Pac Symp Biocomput; 2016; 21():45-56. PubMed ID: 26776172 [TBL] [Abstract][Full Text] [Related]
10. Modular within and between score for drug response prediction in cancer cell lines. Wang S; Li J Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092 [TBL] [Abstract][Full Text] [Related]
11. Mathematical modeling and computational prediction of cancer drug resistance. Sun X; Hu B Brief Bioinform; 2018 Nov; 19(6):1382-1399. PubMed ID: 28981626 [TBL] [Abstract][Full Text] [Related]
12. Introduction: Cancer Gene Networks. Clarke R Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826 [TBL] [Abstract][Full Text] [Related]
13. A machine learning-based gene signature of response to the novel alkylating agent LP-184 distinguishes its potential tumor indications. Kathad U; Kulkarni A; McDermott JR; Wegner J; Carr P; Biyani N; Modali R; Richard JP; Sharma P; Bhatia K BMC Bioinformatics; 2021 Mar; 22(1):102. PubMed ID: 33653269 [TBL] [Abstract][Full Text] [Related]
14. A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations. Chang JW; Ding Y; Tahir Ul Qamar M; Shen Y; Gao J; Chen LL Carcinogenesis; 2019 Jul; 40(5):624-632. PubMed ID: 30944926 [TBL] [Abstract][Full Text] [Related]
15. Prioritizing therapeutics for lung cancer: an integrative meta-analysis of cancer gene signatures and chemogenomic data. Fortney K; Griesman J; Kotlyar M; Pastrello C; Angeli M; Sound-Tsao M; Jurisica I PLoS Comput Biol; 2015 Mar; 11(3):e1004068. PubMed ID: 25786242 [TBL] [Abstract][Full Text] [Related]
16. Network as a Biomarker: A Novel Network-Based Sparse Bayesian Machine for Pathway-Driven Drug Response Prediction. Liu Q; Muglia LJ; Huang LF Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31405013 [TBL] [Abstract][Full Text] [Related]
17. DeSigN: connecting gene expression with therapeutics for drug repurposing and development. Lee BK; Tiong KH; Chang JK; Liew CS; Abdul Rahman ZA; Tan AC; Khang TF; Cheong SC BMC Genomics; 2017 Jan; 18(Suppl 1):934. PubMed ID: 28198666 [TBL] [Abstract][Full Text] [Related]
18. The COXEN principle: translating signatures of in vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer. Smith SC; Baras AS; Lee JK; Theodorescu D Cancer Res; 2010 Mar; 70(5):1753-8. PubMed ID: 20160033 [TBL] [Abstract][Full Text] [Related]
19. Learning the cellular activity representation based on gene regulatory networks for prediction of tumor response to drugs. Xie X; Wang F; Wang G; Zhu W; Du X; Wang H Artif Intell Med; 2024 Jun; 152():102864. PubMed ID: 38640702 [TBL] [Abstract][Full Text] [Related]
20. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods. Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]