These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33413120)
1. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. Siedliska A; Baranowski P; Pastuszka-Woźniak J; Zubik M; Krzyszczak J BMC Plant Biol; 2021 Jan; 21(1):28. PubMed ID: 33413120 [TBL] [Abstract][Full Text] [Related]
2. Moderate water stress prevents the postharvest decline of ascorbic acid in spinach (Spinacia oleracea L.) but not in spinach beet (Beta vulgaris L.). Mogren LM; Beacham AM; Reade JP; Monaghan JM J Sci Food Agric; 2016 Jul; 96(9):2976-80. PubMed ID: 26381599 [TBL] [Abstract][Full Text] [Related]
3. In situ hyperspectral data analysis for pigment content estimation of rice leaves. Cheng Q; Huang JF; Wang XZ; Wang RC J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990 [TBL] [Abstract][Full Text] [Related]
4. Hyperspectral imaging for estimating leaf, flower, and fruit macronutrient concentrations and predicting strawberry yields. Dung CD; Trueman SJ; Wallace HM; Farrar MB; Gama T; Tahmasbian I; Bai SH Environ Sci Pollut Res Int; 2023 Nov; 30(53):114166-114182. PubMed ID: 37858016 [TBL] [Abstract][Full Text] [Related]
5. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging. Wang Y; Hu X; Jin G; Hou Z; Ning J; Zhang Z J Sci Food Agric; 2019 Mar; 99(4):1997-2004. PubMed ID: 30298617 [TBL] [Abstract][Full Text] [Related]
6. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field]. Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385 [TBL] [Abstract][Full Text] [Related]
7. Effects of Irrigation with Microcystin-Containing Water on Growth, Physiology, and Antioxidant Defense in Strawberry Haida M; El Khalloufi F; Mugani R; Redouane EM; Campos A; Vasconcelos V; Oudra B Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324694 [TBL] [Abstract][Full Text] [Related]
8. Migrating from Invasive to Noninvasive Techniques for Enhanced Leaf Chlorophyll Content Estimations Efficiency. Kandpal KC; Kumar A Crit Rev Anal Chem; 2024; 54(7):2583-2598. PubMed ID: 36995248 [TBL] [Abstract][Full Text] [Related]
9. A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach. Falcioni R; Antunes WC; Demattê JAM; Nanni MR Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112184 [TBL] [Abstract][Full Text] [Related]
10. Optimal fertigation for high yield and fruit quality of greenhouse strawberry. Wu Y; Li L; Li M; Zhang M; Sun H; Sigrimis N PLoS One; 2020; 15(4):e0224588. PubMed ID: 32236110 [TBL] [Abstract][Full Text] [Related]
11. The Accumulation of Lutein and β-Carotene and Transcript Profiling of Genes Related to Carotenoids Biosynthesis in Yellow Celery. Ding X; Jia LL; Xing GM; Tao JP; Sun S; Tan GF; Li S; Liu JX; Duan AQ; Wang H; Xiong AS Mol Biotechnol; 2021 Jul; 63(7):638-649. PubMed ID: 33973142 [TBL] [Abstract][Full Text] [Related]
12. Changes in the content of anthocyanins, flavonols, and antioxidant activity in Fragaria ananassa var. Camarosa fruits under traditional and organic fertilization. Ruiz A; Sanhueza M; Gómez F; Tereucán G; Valenzuela T; García S; Cornejo P; Hermosín-Gutiérrez I J Sci Food Agric; 2019 Mar; 99(5):2404-2410. PubMed ID: 30357837 [TBL] [Abstract][Full Text] [Related]
13. Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms. Yamashita H; Sonobe R; Hirono Y; Morita A; Ikka T Sci Rep; 2020 Oct; 10(1):17360. PubMed ID: 33060629 [TBL] [Abstract][Full Text] [Related]
14. Foliar zinc spraying improves assimilative capacity of sugar beet leaves by promoting magnesium and calcium uptake and enhancing photochemical performance. Zhao X; Song B; Riaz M; Li M; Lal MK; Adil MF; Huo J; Ishfaq M Plant Physiol Biochem; 2024 Jan; 206():108277. PubMed ID: 38104397 [TBL] [Abstract][Full Text] [Related]
15. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping. Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357 [TBL] [Abstract][Full Text] [Related]
16. Hyperspectral Imaging in the UV Range Allows for Differentiation of Sugar Beet Diseases Based on Changes in Secondary Plant Metabolites. Brugger A; Yamati FI; Barreto A; Paulus S; Schramowsk P; Kersting K; Steiner U; Neugart S; Mahlein AK Phytopathology; 2023 Jan; 113(1):44-54. PubMed ID: 35904439 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing. Tang YL; Huang JF; Cai SH; Wang RC Pak J Biol Sci; 2007 Dec; 10(24):4420-5. PubMed ID: 19093505 [TBL] [Abstract][Full Text] [Related]
18. Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing Environment, and genotype on the contents of selected phenolics in strawberry (Fragaria x ananassa Duch.) fruits. Anttonen MJ; Hoppula KI; Nestby R; Verheul MJ; Karjalainen RO J Agric Food Chem; 2006 Apr; 54(7):2614-20. PubMed ID: 16569052 [TBL] [Abstract][Full Text] [Related]
19. Exploration of physiological and biochemical processes of canola with exogenously applied fertilizers and plant growth regulators under drought stress. Aslam MM; Farhat F; Siddiqui MA; Yasmeen S; Khan MT; Sial MA; Khan IA PLoS One; 2021; 16(12):e0260960. PubMed ID: 34928963 [TBL] [Abstract][Full Text] [Related]
20. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf. Romanova AK; Semenova GA; Ignat'ev AR; Novichkova NS; Fomina IR Protoplasma; 2016 May; 253(3):719-727. PubMed ID: 26666552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]