These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 33413296)
21. Effects of titanium brush on machined and sand-blasted/acid-etched titanium disc using confocal microscopy and contact profilometry. Park JB; Jeon Y; Ko Y Clin Oral Implants Res; 2015 Feb; 26(2):130-6. PubMed ID: 24299063 [TBL] [Abstract][Full Text] [Related]
22. Changes in the surface topography and element proportion of clinically failed SLA implants after in vitro debridement by different methods. Tong Z; Fu R; Zhu W; Shi J; Yu M; Si M Clin Oral Implants Res; 2021 Mar; 32(3):263-273. PubMed ID: 33314381 [TBL] [Abstract][Full Text] [Related]
23. In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks. Park JB; Jang YJ; Koh M; Choi BK; Kim KK; Ko Y J Periodontol; 2013 Aug; 84(8):1191-8. PubMed ID: 23075432 [TBL] [Abstract][Full Text] [Related]
24. The effect of five mechanical instrumentation protocols on implant surface topography and roughness: A scanning electron microscope and confocal laser scanning microscope analysis. Cha JK; Paeng K; Jung UW; Choi SH; Sanz M; Sanz-Martín I Clin Oral Implants Res; 2019 Jun; 30(6):578-587. PubMed ID: 31022305 [TBL] [Abstract][Full Text] [Related]
25. Efficacy of Removal of Residual Dental Cement by Laser, Ultrasonic Scalers, and Titanium Curette: An In Vitro Study. Fletcher P; Linden E; Cobb C; Zhao D; Rubin J; Planzos P Compend Contin Educ Dent; 2021 May; 42(5):e5-e9. PubMed ID: 33980017 [TBL] [Abstract][Full Text] [Related]
26. The comparative effect of ultrasonic scalers on titanium surfaces: an in vitro study. Sato S; Kishida M; Ito K J Periodontol; 2004 Sep; 75(9):1269-73. PubMed ID: 15515344 [TBL] [Abstract][Full Text] [Related]
27. The surface characteristics produced by various oral hygiene instruments and materials on titanium implant abutments. Rapley JW; Swan RH; Hallmon WW; Mills MP Int J Oral Maxillofac Implants; 1990; 5(1):47-52. PubMed ID: 2202669 [TBL] [Abstract][Full Text] [Related]
28. Comparison of a Novel Ultrasonic Scaler Tip vs. Conventional Design on a Titanium Surface. Sinjari B; D'Addazio G; Bozzi M; Celletti R; Traini T; Mavriqi L; Caputi S Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30469472 [TBL] [Abstract][Full Text] [Related]
29. Implant surface alterations from a nonmetallic ultrasonic tip. Bailey GM; Gardner JS; Day MH; Kovanda BJ J West Soc Periodontol Periodontal Abstr; 1998; 46(3):69-73. PubMed ID: 10597152 [TBL] [Abstract][Full Text] [Related]
30. Influence of eight debridement techniques on three different titanium surfaces: A laboratory study. Tran C; Khan A; Meredith N; Walsh LJ Int J Dent Hyg; 2023 Feb; 21(1):238-250. PubMed ID: 35943293 [TBL] [Abstract][Full Text] [Related]
32. Surface characterization of SLActive dental implants. Zinelis S; Silikas N; Thomas A; Syres K; Eliades G Eur J Esthet Dent; 2012; 7(1):72-92. PubMed ID: 22319766 [TBL] [Abstract][Full Text] [Related]
33. Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Schwarz F; Rothamel D; Sculean A; Georg T; Scherbaum W; Becker J Clin Oral Implants Res; 2003 Dec; 14(6):784-92. PubMed ID: 15015956 [TBL] [Abstract][Full Text] [Related]
34. Profilometric and standard error of the mean analysis of rough implant surfaces treated with different instrumentations. Ramaglia L; di Lauro AE; Morgese F; Squillace A Implant Dent; 2006 Mar; 15(1):77-82. PubMed ID: 16569965 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of root surface microtopography following the use of four instrumentation systems by confocal microscopy and scanning electron microscopy: an in vitro study. Solís Moreno C; Santos A; Nart J; Levi P; Velásquez A; Sanz Moliner J J Periodontal Res; 2012 Oct; 47(5):608-15. PubMed ID: 22494068 [TBL] [Abstract][Full Text] [Related]
36. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces. Lang MS; Cerutis DR; Miyamoto T; Nunn ME Int J Oral Maxillofac Implants; 2016; 31(4):799-806. PubMed ID: 27447145 [TBL] [Abstract][Full Text] [Related]
37. Peri-implantitis cleaning instrumentation influences the integrity of photoactive nanocoatings. Kister F; Specht O; Warkentin M; Geis-Gerstorfer J; Rupp F Dent Mater; 2017 Feb; 33(2):e69-e78. PubMed ID: 27832905 [TBL] [Abstract][Full Text] [Related]
38. Location of unaccessible implant surface areas during debridement in simulated peri-implantitis therapy. Steiger-Ronay V; Merlini A; Wiedemeier DB; Schmidlin PR; Attin T; Sahrmann P BMC Oral Health; 2017 Nov; 17(1):137. PubMed ID: 29183313 [TBL] [Abstract][Full Text] [Related]
39. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Ronay V; Merlini A; Attin T; Schmidlin PR; Sahrmann P Clin Oral Implants Res; 2017 Feb; 28(2):151-155. PubMed ID: 26799360 [TBL] [Abstract][Full Text] [Related]
40. Treatment of titanium dental implants with three piezoelectric ultrasonic scalers: an in vivo study. Kawashima H; Sato S; Kishida M; Yagi H; Matsumoto K; Ito K J Periodontol; 2007 Sep; 78(9):1689-94. PubMed ID: 17760537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]