These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33413920)

  • 1. Right population, right resources, right algorithm: Using machine learning efficiently and effectively in surgical systems where data are a limited resource.
    Eyler Dang L; Hubbard A; Dissak-Delon FN; Chichom Mefire A; Juillard C
    Surgery; 2021 Jul; 170(1):325-328. PubMed ID: 33413920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing different supervised machine learning algorithms for disease prediction.
    Uddin S; Khan A; Hossain ME; Moni MA
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):281. PubMed ID: 31864346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis.
    Karhade AV; Thio QCBS; Ogink PT; Shah AA; Bono CM; Oh KS; Saylor PJ; Schoenfeld AJ; Shin JH; Harris MB; Schwab JH
    Neurosurgery; 2019 Jul; 85(1):E83-E91. PubMed ID: 30476188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.
    Allen D; Gillen E; Rixson L
    JBI Libr Syst Rev; 2009; 7(3):80-129. PubMed ID: 27820426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Claims-Based Algorithms for Identifying Patients With Pulmonary Hypertension: A Comparison of Decision Rules and Machine-Learning Approaches.
    Ong MS; Klann JG; Lin KJ; Maron BA; Murphy SN; Natter MD; Mandl KD
    J Am Heart Assoc; 2020 Oct; 9(19):e016648. PubMed ID: 32990147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning without borders? An adaptable tool to optimize mortality prediction in diverse clinical settings.
    Christie SA; Hubbard AE; Callcut RA; Hameed M; Dissak-Delon FN; Mekolo D; Saidou A; Mefire AC; Nsongoo P; Dicker RA; Cohen MJ; Juillard C
    J Trauma Acute Care Surg; 2018 Nov; 85(5):921-927. PubMed ID: 30059457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of supervised machine learning algorithms for prediction of satisfaction at 2 years following total shoulder arthroplasty.
    Polce EM; Kunze KN; Fu MC; Garrigues GE; Forsythe B; Nicholson GP; Cole BJ; Verma NN
    J Shoulder Elbow Surg; 2021 Jun; 30(6):e290-e299. PubMed ID: 33010437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning for surgical time prediction.
    Martinez O; Martinez C; Parra CA; Rugeles S; Suarez DR
    Comput Methods Programs Biomed; 2021 Sep; 208():106220. PubMed ID: 34161848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement learning in surgery.
    Datta S; Li Y; Ruppert MM; Ren Y; Shickel B; Ozrazgat-Baslanti T; Rashidi P; Bihorac A
    Surgery; 2021 Jul; 170(1):329-332. PubMed ID: 33436272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation science in resource-poor countries and communities.
    Yapa HM; Bärnighausen T
    Implement Sci; 2018 Dec; 13(1):154. PubMed ID: 30587195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving preterm newborn identification in low-resource settings with machine learning.
    Rittenhouse KJ; Vwalika B; Keil A; Winston J; Stoner M; Price JT; Kapasa M; Mubambe M; Banda V; Muunga W; Stringer JSA
    PLoS One; 2019; 14(2):e0198919. PubMed ID: 30811399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Hemoglobin Level Prediction in a Mobile Phone Environment: State of the Art Review and Recommendations.
    Hasan MK; Aziz MH; Zarif MII; Hasan M; Hashem M; Guha S; Love RR; Ahamed S
    JMIR Mhealth Uhealth; 2021 Apr; 9(4):e16806. PubMed ID: 33830065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? A systematic review.
    Hassan N; Slight R; Weiand D; Vellinga A; Morgan G; Aboushareb F; Slight SP
    Int J Med Inform; 2021 Jun; 150():104457. PubMed ID: 33878596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications.
    Peiffer-Smadja N; Rawson TM; Ahmad R; Buchard A; Georgiou P; Lescure FX; Birgand G; Holmes AH
    Clin Microbiol Infect; 2020 May; 26(5):584-595. PubMed ID: 31539636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Overview of Machine Learning within Embedded and Mobile Devices-Optimizations and Applications.
    Ajani TS; Imoize AL; Atayero AA
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ovarian torsion: developing a machine-learned algorithm for diagnosis.
    Otjen JP; Stanescu AL; Alessio AM; Parisi MT
    Pediatr Radiol; 2020 May; 50(5):706-714. PubMed ID: 31970456
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.