These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 33414494)
1. Publisher Correction: Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images. Gerrits N; Elen B; Van Craenendonck T; Triantafyllidou D; Petropoulos IN; Malik RA; De Boever P Sci Rep; 2021 Jan; 11(1):1198. PubMed ID: 33414494 [No Abstract] [Full Text] [Related]
2. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
3. Association of Cardiovascular Mortality and Deep Learning-Funduscopic Atherosclerosis Score derived from Retinal Fundus Images. Chang J; Ko A; Park SM; Choi S; Kim K; Kim SM; Yun JM; Kang U; Shin IH; Shin JY; Ko T; Lee J; Oh BL; Park KH Am J Ophthalmol; 2020 Sep; 217():121-130. PubMed ID: 32222370 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
6. Publisher Correction: Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning. Masood S; Fang R; Li P; Li H; Sheng B; Mathavan A; Wang X; Yang P; Wu Q; Qin J; Jia W Sci Rep; 2019 Dec; 9(1):19381. PubMed ID: 31836721 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning for Predicting Refractive Error From Retinal Fundus Images. Varadarajan AV; Poplin R; Blumer K; Angermueller C; Ledsam J; Chopra R; Keane PA; Corrado GS; Peng L; Webster DR Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):2861-2868. PubMed ID: 30025129 [TBL] [Abstract][Full Text] [Related]
8. Publisher Correction: Single-sequence protein structure prediction using a language model and deep learning. Chowdhury R; Bouatta N; Biswas S; Floristean C; Kharkar A; Roy K; Rochereau C; Ahdritz G; Zhang J; Church GM; Sorger PK; AlQuraishi M Nat Biotechnol; 2022 Nov; 40(11):1692. PubMed ID: 36253538 [No Abstract] [Full Text] [Related]
9. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration. Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091 [TBL] [Abstract][Full Text] [Related]
10. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning-Based Classification of Inherited Retinal Diseases Using Fundus Autofluorescence. Miere A; Le Meur T; Bitton K; Pallone C; Semoun O; Capuano V; Colantuono D; Taibouni K; Chenoune Y; Astroz P; Berlemont S; Petit E; Souied E J Clin Med; 2020 Oct; 9(10):. PubMed ID: 33066661 [No Abstract] [Full Text] [Related]
12. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
13. Quality and content analysis of fundus images using deep learning. Chalakkal RJ; Abdulla WH; Thulaseedharan SS Comput Biol Med; 2019 May; 108():317-331. PubMed ID: 31028967 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning-Based Prediction of Refractive Error Using Photorefraction Images Captured by a Smartphone: Model Development and Validation Study. Chun J; Kim Y; Shin KY; Han SH; Oh SY; Chung TY; Park KA; Lim DH JMIR Med Inform; 2020 May; 8(5):e16225. PubMed ID: 32369035 [TBL] [Abstract][Full Text] [Related]
15. Retrospective correction of motion-affected MR images using deep learning frameworks. Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
17. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. Leynes AP; Yang J; Wiesinger F; Kaushik SS; Shanbhag DD; Seo Y; Hope TA; Larson PEZ J Nucl Med; 2018 May; 59(5):852-858. PubMed ID: 29084824 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based survival prediction for multiple cancer types using histopathology images. Wulczyn E; Steiner DF; Xu Z; Sadhwani A; Wang H; Flament-Auvigne I; Mermel CH; Chen PC; Liu Y; Stumpe MC PLoS One; 2020; 15(6):e0233678. PubMed ID: 32555646 [TBL] [Abstract][Full Text] [Related]
19. Publisher Correction: Intuitive physics learning in a deep-learning model inspired by developmental psychology. Piloto LS; Weinstein A; Battaglia P; Botvinick M Nat Hum Behav; 2022 Aug; 6(8):1181. PubMed ID: 35859190 [No Abstract] [Full Text] [Related]
20. Publisher Correction: Disease variant prediction with deep generative models of evolutionary data. Frazer J; Notin P; Dias M; Gomez A; Min JK; Brock K; Gal Y; Marks DS Nature; 2022 Jan; 601(7892):E7. PubMed ID: 34921310 [No Abstract] [Full Text] [Related] [Next] [New Search]