These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 33414552)

  • 1. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer.
    Najumudeen AK; Ceteci F; Fey SK; Hamm G; Steven RT; Hall H; Nikula CJ; Dexter A; Murta T; Race AM; Sumpton D; Vlahov N; Gay DM; Knight JRP; Jackstadt R; Leach JDG; Ridgway RA; Johnson ER; Nixon C; Hedley A; Gilroy K; Clark W; Malla SB; Dunne PD; Rodriguez-Blanco G; Critchlow SE; Mrowinska A; Malviya G; Solovyev D; Brown G; Lewis DY; Mackay GM; Strathdee D; Tardito S; Gottlieb E; ; Takats Z; Barry ST; Goodwin RJA; Bunch J; Bushell M; Campbell AD; Sansom OJ
    Nat Genet; 2021 Jan; 53(1):16-26. PubMed ID: 33414552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncogenic KRAS mutations enhance amino acid uptake by colorectal cancer cells via the hippo signaling effector YAP1.
    Kandasamy P; Zlobec I; Nydegger DT; Pujol-Giménez J; Bhardwaj R; Shirasawa S; Tsunoda T; Hediger MA
    Mol Oncol; 2021 Oct; 15(10):2782-2800. PubMed ID: 34003553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance.
    Wong CC; Xu J; Bian X; Wu JL; Kang W; Qian Y; Li W; Chen H; Gou H; Liu D; Yat Luk ST; Zhou Q; Ji F; Chan LS; Shirasawa S; Sung JJ; Yu J
    Gastroenterology; 2020 Dec; 159(6):2163-2180.e6. PubMed ID: 32814111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Role of ASCT2 (SLC1A5) in KRAS-Mutated Colorectal Cancer.
    Toda K; Nishikawa G; Iwamoto M; Itatani Y; Takahashi R; Sakai Y; Kawada K
    Int J Mol Sci; 2017 Jul; 18(8):. PubMed ID: 28749408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5).
    Cormerais Y; Massard PA; Vucetic M; Giuliano S; Tambutté E; Durivault J; Vial V; Endou H; Wempe MF; Parks SK; Pouyssegur J
    J Biol Chem; 2018 Feb; 293(8):2877-2887. PubMed ID: 29326164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-tumor effects of an antagonistic mAb against the ASCT2 amino acid transporter on KRAS-mutated human colorectal cancer cells.
    Hara Y; Minami Y; Yoshimoto S; Hayashi N; Yamasaki A; Ueda S; Masuko K; Masuko T
    Cancer Med; 2020 Jan; 9(1):302-312. PubMed ID: 31709772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Suppression and Knockout of ASCT2 or LAT1 in Epithelial and Mesenchymal Human Liver Cancer Cells Fail to Inhibit Growth.
    Bothwell PJ; Kron CD; Wittke EF; Czerniak BN; Bode BP
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30029480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.
    Xu X; Li J; Sun X; Guo Y; Chu D; Wei L; Li X; Yang G; Liu X; Yao L; Zhang J; Shen L
    Oncotarget; 2015 Sep; 6(28):26161-76. PubMed ID: 26317652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase.
    Toda K; Kawada K; Iwamoto M; Inamoto S; Sasazuki T; Shirasawa S; Hasegawa S; Sakai Y
    Neoplasia; 2016 Nov; 18(11):654-665. PubMed ID: 27764698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice.
    Zhao X; Petrashen AP; Sanders JA; Peterson AL; Sedivy JM
    Aging Cell; 2019 Jun; 18(3):e12947. PubMed ID: 30909319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.
    Wong CC; Qian Y; Li X; Xu J; Kang W; Tong JH; To KF; Jin Y; Li W; Chen H; Go MY; Wu JL; Cheng KW; Ng SS; Sung JJ; Cai Z; Yu J
    Gastroenterology; 2016 Nov; 151(5):945-960.e6. PubMed ID: 27451147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quadruple-editing of the MAPK and PI3K pathways effectively blocks the progression of KRAS-mutated colorectal cancer cells.
    Wang Z; Kang B; Gao Q; Huang L; Di J; Fan Y; Yu J; Jiang B; Gao F; Wang D; Sun H; Gu Y; Li J; Su X
    Cancer Sci; 2021 Sep; 112(9):3895-3910. PubMed ID: 34185934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-Acetyl-Antroquinonol B Improves the Sensitization of Cetuximab on Both Kras Mutant and Wild Type Colorectal Cancer by Modulating the Expression of Ras/Raf/miR-193a-3p Signaling Axis.
    Chu YC; Tsai TY; Yadav VK; Deng L; Huang CC; Tzeng YM; Yeh CT; Chen MY
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KRAS Mutation-Responsive miR-139-5p inhibits Colorectal Cancer Progression and is repressed by Wnt Signaling.
    Du F; Cao T; Xie H; Li T; Sun L; Liu H; Guo H; Wang X; Liu Q; Kim T; Franklin JL; Graves-Deal R; Han W; Tian Z; Ge M; Nie Y; Fan D; Coffey RJ; Lu Y; Zhao X
    Theranostics; 2020; 10(16):7335-7350. PubMed ID: 32641995
    [No Abstract]   [Full Text] [Related]  

  • 15. Mutant KRAS promotes hyperplasia and alters differentiation in the colon epithelium but does not expand the presumptive stem cell pool.
    Feng Y; Bommer GT; Zhao J; Green M; Sands E; Zhai Y; Brown K; Burberry A; Cho KR; Fearon ER
    Gastroenterology; 2011 Sep; 141(3):1003-1013.e1-10. PubMed ID: 21699772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorafenib enhances the therapeutic efficacy of rapamycin in colorectal cancers harboring oncogenic KRAS and PIK3CA.
    Gulhati P; Zaytseva YY; Valentino JD; Stevens PD; Kim JT; Sasazuki T; Shirasawa S; Lee EY; Weiss HL; Dong J; Gao T; Evers BM
    Carcinogenesis; 2012 Sep; 33(9):1782-90. PubMed ID: 22696593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer.
    White MA; Lin C; Rajapakshe K; Dong J; Shi Y; Tsouko E; Mukhopadhyay R; Jasso D; Dawood W; Coarfa C; Frigo DE
    Mol Cancer Res; 2017 Aug; 15(8):1017-1028. PubMed ID: 28507054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake.
    Osman I; He X; Liu J; Dong K; Wen T; Zhang F; Yu L; Hu G; Xin H; Zhang W; Zhou J
    Circ Res; 2019 Apr; 124(9):1309-1322. PubMed ID: 30801233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine.
    Davies EJ; Marsh Durban V; Meniel V; Williams GT; Clarke AR
    J Pathol; 2014 May; 233(1):27-38. PubMed ID: 24293351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse model of proximal colon-specific tumorigenesis driven by microsatellite instability-induced Cre-mediated inactivation of Apc and activation of Kras.
    Kawaguchi Y; Hinoi T; Saito Y; Adachi T; Miguchi M; Niitsu H; Sasada T; Shimomura M; Egi H; Oka S; Tanaka S; Chayama K; Sentani K; Oue N; Yasui W; Ohdan H
    J Gastroenterol; 2016 May; 51(5):447-57. PubMed ID: 26361962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.