BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33414610)

  • 1. Field Study of Soil Vapor Extraction for Reducing Off-Site Vapor Intrusion.
    Stewart L; Lutes C; Truesdale R; Schumacher B; Zimmerman JH; Connell R
    Ground Water Monit Remediat; 2020 Feb; 40(1):74-85. PubMed ID: 33414610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost Comparison of Soil Vapor Extraction and Subslab Depressurization for Vapor Intrusion Mitigation.
    Lutes C; Stewart L; Truesdale R; De Loera J; Zimmerman JH; Schumacher B
    Ground Water Monit Remediat; 2022 Mar; 42(4):43-53. PubMed ID: 36960358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative generic subslab soil gas-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings.
    Hallberg KE; Levy LC; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D
    J Air Waste Manag Assoc; 2021 Sep; 71(9):1148-1158. PubMed ID: 33989123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical analysis and flux-based radius of influence for radon/VOC vapor intrusion mitigation systems.
    McAlary T; Wertz W; Mali D; Nicholson P
    Sci Total Environ; 2020 Oct; 740():139988. PubMed ID: 32569909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vapor-phase multi-stage CMD test for characterizing contaminant mass discharge associated with VOC sources in the vadose zone: Application to three sites in different lifecycle stages of SVE operations.
    Brusseau ML; Mainhagu J; Morrison C; Carroll KC
    J Contam Hydrol; 2015 Aug; 179():55-64. PubMed ID: 26047819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment.
    Tillman FD; Weaver JW
    Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources.
    Yao Y; Wang Y; Zhong Z; Tang M; Suuberg EM
    J Environ Qual; 2017 Jul; 46(4):776-784. PubMed ID: 28783798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid Flow Model for Predicting the Intrusion Rate of Subsurface Contaminant Vapors into Buildings.
    McAlary TA; Gallinatti J; Thrupp G; Wertz W; Mali D; Dawson H
    Environ Sci Technol; 2018 Aug; 52(15):8438-8445. PubMed ID: 29939732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANALYSIS OF SOIL VAPOR EXTRACTION DATA TO EVALUATE MASS-TRANSFER CONSTRAINTS AND ESTIMATE SOURCE-ZONE MASS FLUX.
    Brusseau ML; Rohay V; Truex MJ
    Ground Water Monit Remediat; 2010; 30(3):57-64. PubMed ID: 23516336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion.
    Shen R; Pennell KG; Suuberg EM
    Chemosphere; 2014 Jan; 95():140-9. PubMed ID: 24034829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining the use of USEPA's Generic Attenuation Factor in determining groundwater screening levels for vapor intrusion.
    Yao Y; Verginelli I; Suuberg EM; Eklund B
    Ground Water Monit Remediat; 2018; 38(2):79-89. PubMed ID: 30524180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality.
    Carroll KC; Oostrom M; Truex MJ; Rohay VJ; Brusseau ML
    J Contam Hydrol; 2012 Feb; 128(1-4):71-82. PubMed ID: 22192346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of indoor air measurements to evaluate intrusion of subsurface VOC vapors into buildings.
    Hers I; Zapf-Gilje R; Li L; Atwater J
    J Air Waste Manag Assoc; 2001 Sep; 51(9):1318-31. PubMed ID: 11575885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An alternative generic groundwater-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings.
    Levy LC; Hallberg KE; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D; Walker TR
    J Air Waste Manag Assoc; 2023 Apr; 73(4):258-270. PubMed ID: 36729994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency fluctuations of indoor pressure: A potential driving force for vapor intrusion in urban areas.
    Yao Y; Xiao Y; Luo J; Wang G; Ström J; Suuberg E
    Sci Total Environ; 2020 Mar; 710():136309. PubMed ID: 31926413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.
    Wilson JL; Samaranayake VA; Limmer MA; Burken JG
    PLoS One; 2018; 13(2):e0193247. PubMed ID: 29451904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using vapor phase tomography to measure the spatial distribution of vapor concentrations and flux for vadose-zone VOC sources.
    Mainhagu J; Morrison C; Brusseau ML
    J Contam Hydrol; 2015; 177-178():54-63. PubMed ID: 25835545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Quantification of the Subslab Volatile Organic Vapor Concentration from a Non-uniform Source.
    Shen R; Suuberg EM
    Environ Model Softw; 2014 Apr; 54():1-8. PubMed ID: 24639604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling quantification of the influence of soil moisture on subslab vapor concentration.
    Shen R; Yao Y; Pennell KG; Suuberg EM
    Environ Sci Process Impacts; 2013 Jul; 15(7):1444-51. PubMed ID: 23752876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Remediation of Chlorinated Volatile Organic Contaminants in the Vadose Zone: An Overview of Issues and Approaches.
    Brusseau ML; Carroll KC; Truex MJ; Becker DJ
    Vadose Zone J; 2013 Nov; 12(4):. PubMed ID: 25383058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.