BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33415326)

  • 1. Infrared spectroscopy from electrostatic embedding QM/MM: local normal mode analysis of infrared spectra of arabidopsis thaliana plant cryptochrome.
    Huix-Rotllant M; Schwinn K; Ferré N
    Phys Chem Chem Phys; 2021 Jan; 23(2):1666-1674. PubMed ID: 33415326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein.
    Schwinn K; Ferré N; Huix-Rotllant M
    Phys Chem Chem Phys; 2020 Jun; 22(22):12447-12455. PubMed ID: 32458897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Polarizable Embedding for Absorption Spectrum Calculations of
    Frederiksen A; Gerhards L; Reinholdt P; Kongsted J; Solov'yov IA
    J Phys Chem B; 2024 Jul; 128(26):6283-6290. PubMed ID: 38913544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Analytic Second Derivative of Electrostatic Embedding QM/MM Energy: Normal Mode Analysis of Plant Cryptochrome.
    Schwinn K; Ferré N; Huix-Rotllant M
    J Chem Theory Comput; 2020 Jun; 16(6):3816-3824. PubMed ID: 32320612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarizable embedding for simulating redox potentials of biomolecules.
    Tazhigulov RN; Gurunathan PK; Kim Y; Slipchenko LV; Bravaya KB
    Phys Chem Chem Phys; 2019 Jun; 21(22):11642-11650. PubMed ID: 31116217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
    Kondoh M; Shiraishi C; Müller P; Ahmad M; Hitomi K; Getzoff ED; Terazima M
    J Mol Biol; 2011 Oct; 413(1):128-37. PubMed ID: 21875594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into photoactivation of plant Cryptochrome-2.
    Palayam M; Ganapathy J; Guercio AM; Tal L; Deck SL; Shabek N
    Commun Biol; 2021 Jan; 4(1):28. PubMed ID: 33398020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivation and inactivation of Arabidopsis cryptochrome 2.
    Wang Q; Zuo Z; Wang X; Gu L; Yoshizumi T; Yang Z; Yang L; Liu Q; Liu W; Han YJ; Kim JI; Liu B; Wohlschlegel JA; Matsui M; Oka Y; Lin C
    Science; 2016 Oct; 354(6310):343-347. PubMed ID: 27846570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP binding promotes light-induced structural changes to the protein moiety of
    Iwata T; Yamada D; Mikuni K; Agata K; Hitomi K; Getzoff ED; Kandori H
    Photochem Photobiol Sci; 2020 Oct; 19(10):1326-1331. PubMed ID: 32935701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.
    Zirak P; Penzkofer A; Moldt J; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2009 Nov; 97(2):94-108. PubMed ID: 19800811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Planta Expression: Searching for the Genuine Chromophores of Cryptochrome-3 from Arabidopsis thaliana.
    Gärtner W
    Photochem Photobiol; 2017 Jan; 93(1):382-384. PubMed ID: 28211124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of a light-sensing role for folate in Arabidopsis cryptochrome blue-light receptors.
    Hoang N; Bouly JP; Ahmad M
    Mol Plant; 2008 Jan; 1(1):68-74. PubMed ID: 20031915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced electron transfer in a cryptochrome blue-light photoreceptor.
    Giovani B; Byrdin M; Ahmad M; Brettel K
    Nat Struct Biol; 2003 Jun; 10(6):489-90. PubMed ID: 12730688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins.
    Immeln D; Pokorny R; Herman E; Moldt J; Batschauer A; Kottke T
    J Phys Chem B; 2010 Dec; 114(51):17155-61. PubMed ID: 21128641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.
    Cailliez F; Müller P; Gallois M; de la Lande A
    J Am Chem Soc; 2014 Sep; 136(37):12974-86. PubMed ID: 25157750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconnection of the Antenna Pigment 8-HDF and Flavin Facilitates Red-Light Reception in a Bifunctional Animal-like Cryptochrome.
    Oldemeyer S; Haddad AZ; Fleming GR
    Biochemistry; 2020 Feb; 59(4):594-604. PubMed ID: 31846308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption Spectra of FAD Embedded in Cryptochromes.
    Nielsen C; Nørby MS; Kongsted J; Solov'yov IA
    J Phys Chem Lett; 2018 Jul; 9(13):3618-3623. PubMed ID: 29905481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana.
    Song SH; Dick B; Penzkofer A; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2006 Oct; 85(1):1-16. PubMed ID: 16725342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.