These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33415527)

  • 1. From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling.
    Irons L; Latorre M; Humphrey JD
    Ann Biomed Eng; 2021 Jul; 49(7):1701-1715. PubMed ID: 33415527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell signaling model for arterial mechanobiology.
    Irons L; Humphrey JD
    PLoS Comput Biol; 2020 Aug; 16(8):e1008161. PubMed ID: 32834001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach.
    Peña JA; Martínez MA; Peña E
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1709-1730. PubMed ID: 31123879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled Simulation of Hemodynamics and Vascular Growth and Remodeling in a Subject-Specific Geometry.
    Wu J; Shadden SC
    Ann Biomed Eng; 2015 Jul; 43(7):1543-54. PubMed ID: 25731141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification.
    Valentín A; Humphrey JD; Holzapfel GA
    Int J Numer Method Biomed Eng; 2013 Aug; 29(8):822-49. PubMed ID: 23713058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms.
    Niestrawska JA; Regitnig P; Viertler C; Cohnert TU; Babu AR; Holzapfel GA
    Acta Biomater; 2019 Apr; 88():149-161. PubMed ID: 30735809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiscale computational model of arterial growth and remodeling including Notch signaling.
    van Asten JGM; Latorre M; Karakaya C; Baaijens FPT; Sahlgren CM; Ristori T; Humphrey JD; Loerakker S
    Biomech Model Mechanobiol; 2023 Oct; 22(5):1569-1588. PubMed ID: 37024602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.
    Mousavi SJ; Farzaneh S; Avril S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1895-1913. PubMed ID: 31201620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
    Valentín A; Humphrey JD
    J Biomech Eng; 2009 Oct; 131(10):101006. PubMed ID: 19831476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension.
    Latorre M; Humphrey JD
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1497-1511. PubMed ID: 29881909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular signaling control of mechanical homeostasis in the aorta.
    Irons L; Estrada AC; Humphrey JD
    Biomech Model Mechanobiol; 2022 Oct; 21(5):1339-1355. PubMed ID: 35867282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling.
    Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA
    Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computational Model of Biochemomechanical Effects of Intraluminal Thrombus on the Enlargement of Abdominal Aortic Aneurysms.
    Virag L; Wilson JS; Humphrey JD; Karšaj I
    Ann Biomed Eng; 2015 Dec; 43(12):2852-2867. PubMed ID: 26070724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Captopril treatment during development alleviates mechanically induced aortic remodeling in newborn elastin knockout mice.
    Kim J; Cocciolone AJ; Staiculescu MC; Mecham RP; Wagenseil JE
    Biomech Model Mechanobiol; 2020 Feb; 19(1):99-112. PubMed ID: 31270728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute mechanical effects of elastase on the infrarenal mouse aorta: implications for models of aneurysms.
    Collins MJ; Eberth JF; Wilson E; Humphrey JD
    J Biomech; 2012 Feb; 45(4):660-5. PubMed ID: 22236532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth.
    Estrada AC; Yoshida K; Saucerman JJ; Holmes JW
    Biomech Model Mechanobiol; 2021 Feb; 20(1):293-307. PubMed ID: 32970240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling.
    Wan W; Hansen L; Gleason RL
    Biomech Model Mechanobiol; 2010 Aug; 9(4):403-19. PubMed ID: 20039091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences.
    Ferruzzi J; Madziva D; Caulk AW; Tellides G; Humphrey JD
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1281-1295. PubMed ID: 29754316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiphysics simulation of a healthy and a diseased abdominal aorta.
    McGregor RH; Szczerba D; Székely G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):227-34. PubMed ID: 18044573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
    Wang Y; Zeinali-Davarani S; Zhang Y
    J Biomech; 2016 Aug; 49(12):2358-65. PubMed ID: 26947034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.