These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33415629)

  • 1. Biodegradation kinetic modeling of pro-oxidant filled polypropylene composites under thermophilic composting conditions after abiotic treatment.
    Sable S; Ahuja S; Bhunia H
    Environ Sci Pollut Res Int; 2021 May; 28(17):21231-21244. PubMed ID: 33415629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation kinetic modeling of oxo-biodegradable polypropylene/polylactide/nanoclay blends and composites under controlled composting conditions.
    Sable S; Mandal DK; Ahuja S; Bhunia H
    J Environ Manage; 2019 Nov; 249():109186. PubMed ID: 31415925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic analysis of solid waste composting at optimal conditions.
    Komilis DP
    Waste Manag; 2006; 26(1):82-91. PubMed ID: 16287600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable kinetics of plastics under controlled composting conditions.
    Leejarkpai T; Suwanmanee U; Rudeekit Y; Mungcharoen T
    Waste Manag; 2011 Jun; 31(6):1153-61. PubMed ID: 21257301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of aeration rate and biodegradability fractionation on composting kinetics.
    de Guardia A; Petiot C; Rogeau D
    Waste Manag; 2008; 28(1):73-84. PubMed ID: 17196812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Effect of Cellulose Nanocrystal Content on the Biodegradation Kinetics of Multiscale Polylactic Acid Composites under Controlled Thermophilic Composting Conditions.
    Colli-Gongora PE; Moo-Tun NM; Herrera-Franco PJ; Valadez-Gonzalez A
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of aerobic biodegradation of feces using sawdust as a matrix.
    Lopez Zavala MA; Funamizu N; Takakuwa T
    Water Res; 2004 Mar; 38(5):1327-39. PubMed ID: 14975666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of accumulated matter from human feces in the sawdust matrix of the composting toilet.
    Hotta S; Funamizu N
    Bioresour Technol; 2009 Feb; 100(3):1310-4. PubMed ID: 18768311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.
    Quecholac-Piña X; García-Rivera MA; Espinosa-Valdemar RM; Vázquez-Morillas A; Beltrán-Villavicencio M; Cisneros-Ramos AL
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25725-25730. PubMed ID: 27044287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of turning aeration and the initial carbon/nitrogen ratio on the biodegradation of polylactic acid under controlled conditions.
    Baldera-Moreno Y; Hernández C; Vargas A; Rojas-Palma A; Morales-Vera R; Andler R
    Int J Biol Macromol; 2024 May; 268(Pt 1):131689. PubMed ID: 38642680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope.
    Brdlík P; Borůvka M; Běhálek L; Lenfeld P
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes.
    Ebrahimzadeh R; Ghazanfari Moghaddam A; Sarcheshmehpour M; Mortezapour H
    Waste Manag Res; 2017 Dec; 35(12):1226-1236. PubMed ID: 29113577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of olive mill waste composting process.
    Vasiliadou IA; Muktadirul Bari Chowdhury AK; Akratos CS; Tekerlekopoulou AG; Pavlou S; Vayenas DV
    Waste Manag; 2015 Sep; 43():61-71. PubMed ID: 26174354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of carbon degradation during co-composting of exhausted grape marc with different biowastes.
    Fernández FJ; Sánchez-Arias V; Villaseñor J; Rodríguez L
    Chemosphere; 2008 Oct; 73(5):670-7. PubMed ID: 18715609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-composting of paper mill sludge and hardwood sawdust under two types of in-vessel processes.
    Dinel H; Marche T; Schnitzer M; Paré T; Champagne P
    J Environ Sci Health B; 2004 Jan; 39(1):139-51. PubMed ID: 15022747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of carbon degradation in a rotary drum pilot scale composting process.
    Villaseñor J; Rodríguez Mayor L; Rodríguez Romero L; Fernández FJ
    J Environ Manage; 2012 Oct; 108():1-7. PubMed ID: 22595131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-irradiated biodegradability of ethylene--propylene copolymers, LDPE, and I-PP in composting and culture environments.
    Pandey JK; Singh RP
    Biomacromolecules; 2001; 2(3):880-5. PubMed ID: 11710045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films.
    Al-Salem SM; Al-Hazza'a A; Karam HJ; Al-Wadi MH; Al-Dhafeeri AT; Al-Rowaih AA
    J Environ Manage; 2019 Nov; 250():109475. PubMed ID: 31491716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.