These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 334162)

  • 41. Evidence for facilitated transport in the absorption of sterols by Saccharomyces cerevisiae.
    Nes WR; Dhanuka IC; Pinto WJ
    Lipids; 1986 Jan; 21(1):102-6. PubMed ID: 3515094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of fatty acid supplementation on thermotropic behavior of membrane lipids and leucine transport in Saccharomyces cerevisiae.
    Basu J; Kundu M; Chakrabarti P
    Arch Biochem Biophys; 1986 Nov; 250(2):382-9. PubMed ID: 3535679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of unsaturated fatty acids on sterol biosynthesis in yeast.
    Boll M; Löwel M; Berndt J
    Biochim Biophys Acta; 1980 Dec; 620(3):429-39. PubMed ID: 7016186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intracellular sterol transport in eukaryotes, a connection to mitochondrial function?
    Schneiter R
    Biochimie; 2007 Feb; 89(2):255-9. PubMed ID: 16945463
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Shin GH; Veen M; Stahl U; Lang C
    Yeast; 2012 Sep; 29(9):371-83. PubMed ID: 22926964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of AY-9944 on yeast sterol and sterol ester metabolism.
    Pereira R; Holmlund CE; Whittaker N
    Lipids; 1983 Aug; 18(8):545-52. PubMed ID: 6194399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An assessment of the specificity of sterol uptake and esterification in Saccharomyces cerevisiae.
    Taylor FR; Parks LW
    J Biol Chem; 1981 Dec; 256(24):13048-54. PubMed ID: 7031055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sterol methylation in Saccharomyces cerevisiae.
    McCammon MT; Hartmann MA; Bottema CD; Parks LW
    J Bacteriol; 1984 Feb; 157(2):475-83. PubMed ID: 6363386
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.
    Zinser E; Paltauf F; Daum G
    J Bacteriol; 1993 May; 175(10):2853-8. PubMed ID: 8491706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemical consequences in yeast of the human mitochondrial DNA 8993T>C mutation in the ATPase6 gene found in NARP/MILS patients.
    Kucharczyk R; Rak M; di Rago JP
    Biochim Biophys Acta; 2009 May; 1793(5):817-24. PubMed ID: 19269308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of sterol transport from the endoplasmic reticulum to mitochondria using mitochondrially targeted bacterial sterol acyltransferase in Saccharomyces cerevisiae.
    Tian S; Ohta A; Horiuchi H; Fukuda R
    Biosci Biotechnol Biochem; 2015; 79(10):1608-14. PubMed ID: 26106800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions.
    Videira RA; Antunes-Madeira MC; Madeira VM
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):209-16. PubMed ID: 11559019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of altered sterol composition on growth characteristics of Saccharomyces cerevisiae.
    Thompson ED; Parks LW
    J Bacteriol; 1974 Nov; 120(2):779-84. PubMed ID: 4616948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unsaturated fatty acids and mitochondrial function in yeast.
    Nutr Rev; 1972 Sep; 30(9):218-21. PubMed ID: 4565183
    [No Abstract]   [Full Text] [Related]  

  • 55. Saccharomyces cerevisiae, a model to study sterol uptake and transport in eukaryotes.
    Reiner S; Micolod D; Schneiter R
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1186-8. PubMed ID: 16246078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts.
    Vázquez J; Grillitsch K; Daum G; Mas A; Beltran G; Torija MJ
    Food Microbiol; 2019 Apr; 78():143-154. PubMed ID: 30497596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mutant and immunochemical studies on the involvement of cytochrome b5 in fatty acid desaturation by yeast microsomes.
    Ohba M; Sato R; Yoshida Y; Bieglmayer C; Ruis H
    Biochim Biophys Acta; 1979 Feb; 572(2):352-62. PubMed ID: 106893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Requirement for a second sterol biosynthetic mutation for viability of a sterol C-14 demethylation defect in Saccharomyces cerevisiae.
    Taylor FR; Rodriguez RJ; Parks LW
    J Bacteriol; 1983 Jul; 155(1):64-8. PubMed ID: 6345514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ESR determination of membrane order parameter in yeast sterol mutants.
    Lees ND; Bard M; Kemple MD; Haak RA; Kleinhans FW
    Biochim Biophys Acta; 1979 Jun; 553(3):469-75. PubMed ID: 222316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active proton leak in mitochondria: a new way to regulate substrate oxidation.
    Mourier A; Devin A; Rigoulet M
    Biochim Biophys Acta; 2010 Feb; 1797(2):255-61. PubMed ID: 19896922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.