These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33416386)

  • 1. Direct Evidence of Void-Induced Structural Relaxations in Colloidal Glass Formers.
    Yip CT; Isobe M; Chan CH; Ren S; Wong KP; Huo Q; Lee CS; Tsang YH; Han Y; Lam CH
    Phys Rev Lett; 2020 Dec; 125(25):258001. PubMed ID: 33416386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Democratic particle motion for metabasin transitions in simple glass formers.
    Appignanesi GA; Rodríguez Fris JA; Montani RA; Kob W
    Phys Rev Lett; 2006 Feb; 96(5):057801. PubMed ID: 16486989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized Excitations and the Morphology of Cooperatively Rearranging Regions in a Colloidal Glass-Forming Liquid.
    Gokhale S; Ganapathy R; Nagamanasa KH; Sood AK
    Phys Rev Lett; 2016 Feb; 116(6):068305. PubMed ID: 26919021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes-Einstein relation.
    Kawasaki T; Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012312. PubMed ID: 23410336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of thermal vibrational motions and stringlike jump motions in three-dimensional glass-forming liquids.
    Kawasaki T; Onuki A
    J Chem Phys; 2013 Mar; 138(12):12A514. PubMed ID: 23556765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracer Transport Probes Relaxation and Structure of Attractive and Repulsive Glassy Liquids.
    Roberts RC; Poling-Skutvik R; Palmer JC; Conrad JC
    J Phys Chem Lett; 2018 Jun; 9(11):3008-3013. PubMed ID: 29763547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters.
    Appignanesi GA; Rodriguez Fris JA
    J Phys Condens Matter; 2009 May; 21(20):203103. PubMed ID: 21825509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid.
    Donati C; Glotzer SC; Poole PH; Kob W; Plimpton SJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3107-19. PubMed ID: 11970118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From particles to spins: Eulerian formulation of supercooled liquids and glasses.
    Chamon C; Cugliandolo LF; Fabricius G; Iguain JL; Weeks ER
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15263-8. PubMed ID: 18832161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetition and pair-interaction of string-like hopping motions in glassy polymers.
    Lam CH
    J Chem Phys; 2017 Jun; 146(24):244906. PubMed ID: 28668068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition.
    Weeks ER; Crocker JC; Levitt AC; Schofield A; Weitz DA
    Science; 2000 Jan; 287(5453):627-31. PubMed ID: 10649991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and short-time vibrational properties of colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition.
    Ma X; Mishra CK; Habdas P; Yodh AG
    J Chem Phys; 2021 Aug; 155(7):074902. PubMed ID: 34418931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural order as a genuine control parameter of dynamics in simple glass formers.
    Tong H; Tanaka H
    Nat Commun; 2019 Dec; 10(1):5596. PubMed ID: 31811143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity and Memory Effect in the Sluggish Dynamics of Vacancy Defects in Colloidal Disordered Crystals and Their Implications to High-Entropy Alloys.
    Chan CH; Huo Q; Kumar A; Shi Y; Hong H; Du Y; Ren S; Wong KP; Yip CT
    Adv Sci (Weinh); 2022 Dec; 9(36):e2205522. PubMed ID: 36310387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant difference in the dynamics between strong and fragile glass formers.
    Furukawa A; Tanaka H
    Phys Rev E; 2016 Nov; 94(5-1):052607. PubMed ID: 27967142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative rearrangement regions and dynamical heterogeneities in colloidal glasses with attractive versus repulsive interactions.
    Zhang Z; Yunker PJ; Habdas P; Yodh AG
    Phys Rev Lett; 2011 Nov; 107(20):208303. PubMed ID: 22181781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the glassy dynamics from melting temperatures in binary glass-forming liquids.
    Nie Y; Wang L; Guan P; Xu N
    Soft Matter; 2024 Feb; 20(7):1565-1572. PubMed ID: 38270340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between particle elasticity, glass fragility, and structural relaxation in dense microgel suspensions.
    Seekell Iii RP; Sarangapani PS; Zhang Z; Zhu Y
    Soft Matter; 2015 Jul; 11(27):5485-91. PubMed ID: 26061613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of dynamic facilitation in molecular dynamics simulations of glass-forming liquids.
    Bergroth MN; Vogel M; Glotzer SC
    J Phys Chem B; 2005 Apr; 109(14):6748-53. PubMed ID: 16851759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.