These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33416454)

  • 1. G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases.
    Dhagia V; Kitagawa A; Jacob C; Zheng C; D'Alessandro A; Edwards JG; Rocic P; Gupte R; Gupte SA
    Am J Physiol Heart Circ Physiol; 2021 Mar; 320(3):H999-H1016. PubMed ID: 33416454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency.
    Chettimada S; Joshi SR; Dhagia V; Aiezza A; Lincoln TM; Gupte R; Miano JM; Gupte SA
    Am J Physiol Heart Circ Physiol; 2016 Oct; 311(4):H904-H912. PubMed ID: 27521420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.
    Findeisen HM; Gizard F; Zhao Y; Qing H; Heywood EB; Jones KL; Cohn D; Bruemmer D
    Arterioscler Thromb Vasc Biol; 2011 Apr; 31(4):851-60. PubMed ID: 21233448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coronary Disease-Associated Gene
    Nagao M; Lyu Q; Zhao Q; Wirka RC; Bagga J; Nguyen T; Cheng P; Kim JB; Pjanic M; Miano JM; Quertermous T
    Circ Res; 2020 Feb; 126(4):517-529. PubMed ID: 31815603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-6-phosphate dehydrogenase and MEG3 controls hypoxia-induced expression of serum response factor (SRF) and SRF-dependent genes in pulmonary smooth muscle cell.
    Kitagawa A; Jacob C; Gupte SA
    J Smooth Muscle Res; 2022; 58(0):34-49. PubMed ID: 35491127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteasomal degradation of myocardin is required for its transcriptional activity in vascular smooth muscle cells.
    Yin H; Jiang Y; Li H; Li J; Gui Y; Zheng XL
    J Cell Physiol; 2011 Jul; 226(7):1897-906. PubMed ID: 21506120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dedicator of cytokinesis 2, a novel regulator for smooth muscle phenotypic modulation and vascular remodeling.
    Guo X; Shi N; Cui XB; Wang JN; Fukui Y; Chen SY
    Circ Res; 2015 May; 116(10):e71-80. PubMed ID: 25788409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The smooth muscle cell-restricted KCNMB1 ion channel subunit is a direct transcriptional target of serum response factor and myocardin.
    Long X; Tharp DL; Georger MA; Slivano OJ; Lee MY; Wamhoff BR; Bowles DK; Miano JM
    J Biol Chem; 2009 Nov; 284(48):33671-82. PubMed ID: 19801679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-eluting stent specifically designed to target vascular smooth muscle cell phenotypic modulation attenuated restenosis through the YAP pathway.
    Huang C; Zhang W; Zhu Y
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H541-H551. PubMed ID: 31298560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase and myocardin.
    Zhou W; Negash S; Liu J; Raj JU
    Am J Physiol Lung Cell Mol Physiol; 2009 May; 296(5):L780-9. PubMed ID: 19251841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression.
    Lockman K; Taylor JM; Mack CP
    Circ Res; 2007 Dec; 101(12):e115-23. PubMed ID: 17991879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rare, nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and phenotype of smooth muscle cells.
    Kuang SQ; Kwartler CS; Byanova KL; Pham J; Gong L; Prakash SK; Huang J; Kamm KE; Stull JT; Sweeney HL; Milewicz DM
    Circ Res; 2012 May; 110(11):1411-22. PubMed ID: 22511748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators.
    Swärd K; Krawczyk KK; Morén B; Zhu B; Matic L; Holmberg J; Hedin U; Uvelius B; Stenkula K; Rippe C
    Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1128-C1142. PubMed ID: 31461342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediterranean G6PD variant rats are protected from Angiotensin II-induced hypertension and kidney damage, but not from inflammation and arterial stiffness.
    Matsumura S; D'Addiaro C; Slivano OJ; De Miguel C; Stier C; Gupte R; Miano JM; Gupte SA
    Vascul Pharmacol; 2022 Aug; 145():107002. PubMed ID: 35623546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serum response factor-dependent MicroRNAs regulate gastrointestinal smooth muscle cell phenotypes.
    Park C; Hennig GW; Sanders KM; Cho JH; Hatton WJ; Redelman D; Park JK; Ward SM; Miano JM; Yan W; Ro S
    Gastroenterology; 2011 Jul; 141(1):164-75. PubMed ID: 21473868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box.
    Doi H; Iso T; Yamazaki M; Akiyama H; Kanai H; Sato H; Kawai-Kowase K; Tanaka T; Maeno T; Okamoto E; Arai M; Kedes L; Kurabayashi M
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2328-34. PubMed ID: 16151017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olfactomedin 2 Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling Through Mediating Runt-Related Transcription Factor 2 Binding to Serum Response Factor.
    Shi N; Li CX; Cui XB; Tomarev SI; Chen SY
    Arterioscler Thromb Vasc Biol; 2017 Mar; 37(3):446-454. PubMed ID: 28062493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation.
    Zheng JP; He X; Liu F; Yin S; Wu S; Yang M; Zhao J; Dai X; Jiang H; Yu L; Yin Q; Ju D; Li C; Lipovich L; Xie Y; Zhang K; Li HJ; Zhou J; Li L
    Sci Rep; 2020 Dec; 10(1):21781. PubMed ID: 33311559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean
    Kitagawa A; Kizub I; Jacob C; Michael K; D'Alessandro A; Reisz JA; Grzybowski M; Geurts AM; Rocic P; Gupte R; Miano JM; Gupte SA
    Hypertension; 2020 Aug; 76(2):523-532. PubMed ID: 32507041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes.
    Yoshida T; Sinha S; Dandré F; Wamhoff BR; Hoofnagle MH; Kremer BE; Wang DZ; Olson EN; Owens GK
    Circ Res; 2003 May; 92(8):856-64. PubMed ID: 12663482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.