These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33416814)
1. A twin-axial pseudorotaxane for phosphorescence cell imaging. Ma XK; Zhang YM; Yu Q; Zhang H; Zhang Z; Liu Y Chem Commun (Camb); 2021 Feb; 57(10):1214-1217. PubMed ID: 33416814 [TBL] [Abstract][Full Text] [Related]
2. Room-temperature phosphorescent γ-cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes for specific sensing of tryptophan. Yu X; Liang W; Huang Q; Wu W; Chruma JJ; Yang C Chem Commun (Camb); 2019 Mar; 55(21):3156-3159. PubMed ID: 30801096 [TBL] [Abstract][Full Text] [Related]
3. pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl beta-cyclodextrin and cucurbit[7]uril. Ooya T; Inoue D; Choi HS; Kobayashi Y; Loethen S; Thompson DH; Ko YH; Kim K; Yui N Org Lett; 2006 Jul; 8(15):3159-62. PubMed ID: 16836355 [TBL] [Abstract][Full Text] [Related]
4. A heterowheel [3]pseudorotaxane by integrating β-cyclodextrin and cucurbit[8]uril inclusion complexes. Ding ZJ; Zhang HY; Wang LH; Ding F; Liu Y Org Lett; 2011 Mar; 13(5):856-9. PubMed ID: 21268596 [TBL] [Abstract][Full Text] [Related]
5. Purely organic light-harvesting phosphorescence energy transfer by β-cyclodextrin pseudorotaxane for mitochondria targeted imaging. Shen FF; Chen Y; Dai X; Zhang HY; Zhang B; Liu Y; Liu Y Chem Sci; 2020 Dec; 12(5):1851-1857. PubMed ID: 34163949 [TBL] [Abstract][Full Text] [Related]
6. Dithienylethene-based rotaxanes: synthesis, characterization and properties. Hu F; Huang J; Cao M; Chen Z; Yang YW; Liu SH; Yin J Org Biomol Chem; 2014 Oct; 12(39):7712-20. PubMed ID: 25081736 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular vesicle: triggered by formation of pseudorotaxane between cucurbit[6]uril and surfactant. Zhou Q; Wang H; Gao T; Yu Y; Ling B; Mao L; Zhang H; Meng X; Zhou X Chem Commun (Camb); 2011 Oct; 47(40):11315-7. PubMed ID: 21927725 [TBL] [Abstract][Full Text] [Related]
9. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Zhou WL; Chen Y; Yu Q; Zhang H; Liu ZX; Dai XY; Li JJ; Liu Y Nat Commun; 2020 Sep; 11(1):4655. PubMed ID: 32938918 [TBL] [Abstract][Full Text] [Related]
10. Transformation of micelles into supramolecular vesicles triggered by the formation of [4]pseudorotaxanes. Zhou Q; Gao D; Liu J; Sun X; Zhang L; Qi B; Zhang H; Xia C; Zhou X J Colloid Interface Sci; 2013 Nov; 410():131-9. PubMed ID: 24034222 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient discrimination of cancer cells based on Liu YH; Liu Y J Mater Chem B; 2022 Oct; 10(39):8058-8063. PubMed ID: 36111529 [TBL] [Abstract][Full Text] [Related]
12. Toward high-generation rotaxane dendrimers that incorporate a ring component on every branch: noncovalent synthesis of a dendritic [10]pseudorotaxane with 13 molecular components. Kim SY; Ko YH; Lee JW; Sakamoto S; Yamaguchi K; Kim K Chem Asian J; 2007 Jun; 2(6):747-54. PubMed ID: 17479998 [TBL] [Abstract][Full Text] [Related]
13. Insights into the Difference Between Rotaxane and Pseudorotaxane. Sun HL; Zhang HY; Dai Z; Han X; Liu Y Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389 [TBL] [Abstract][Full Text] [Related]
14. Inclusion of carboxyl function inside of cucurbiturils and its use in molecular switches. Kolman V; Kulhanek P; Sindelar V Chem Asian J; 2010 Nov; 5(11):2386-92. PubMed ID: 20839273 [TBL] [Abstract][Full Text] [Related]
15. Kinetic vs thermodynamic self-sorting of cucurbit[6]uril, cucurbit[7]uril, and a spermine derivative. Masson E; Lu X; Ling X; Patchell DL Org Lett; 2009 Sep; 11(17):3798-801. PubMed ID: 19670907 [TBL] [Abstract][Full Text] [Related]
16. Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve. Sun YL; Yang BJ; Zhang SX; Yang YW Chemistry; 2012 Jul; 18(30):9212-6. PubMed ID: 22718563 [TBL] [Abstract][Full Text] [Related]
17. Dynamic switching between single- and double-axial rotaxanes manipulated by charge and bulkiness of axle termini. Yang C; Ko YH; Selvapalam N; Origane Y; Mori T; Wada T; Kim K; Inoue Y Org Lett; 2007 Nov; 9(23):4789-92. PubMed ID: 17949097 [TBL] [Abstract][Full Text] [Related]
18. Automatic pseudorotaxane formation targeting on nucleic acids using a pair of reactive oligodeoxynucleotides. Onizuka K; Nagatsugi F; Ito Y; Abe H J Am Chem Soc; 2014 May; 136(20):7201-4. PubMed ID: 24807826 [TBL] [Abstract][Full Text] [Related]
19. Near-Quantitative Aqueous Synthesis of Rotaxanes via Bioconjugation to Oligopeptides and Proteins. Bruns CJ; Liu H; Francis MB J Am Chem Soc; 2016 Nov; 138(47):15307-15310. PubMed ID: 27933926 [TBL] [Abstract][Full Text] [Related]
20. The crystal structure, self-assembly, DNA-binding and cleavage studies of the [2]pseudorotaxane composed of cucurbit[6]uril. Huo FJ; Yin CX; Yang P Bioorg Med Chem Lett; 2007 Feb; 17(4):932-6. PubMed ID: 17161945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]