These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33416814)
21. End-to-end distance determination in a cucurbit[6]uril-based rotaxane by PELDOR spectroscopy. Pievo R; Casati C; Franchi P; Mezzina E; Bennati M; Lucarini M Chemphyschem; 2012 Aug; 13(11):2659-61. PubMed ID: 22693109 [TBL] [Abstract][Full Text] [Related]
22. Supramolecular shuttle based on inclusion complex between cucurbit[6]uril and bispyridinium ethylene. Kolman V; Khan MS; Babinský M; Marek R; Sindelar V Org Lett; 2011 Dec; 13(23):6148-51. PubMed ID: 22066799 [TBL] [Abstract][Full Text] [Related]
23. Rotaxane formation by cucurbit[7]uril in water and DMSO solutions. Senler S; Cheng B; Kaifer AE Org Lett; 2014 Nov; 16(22):5834-7. PubMed ID: 25383988 [TBL] [Abstract][Full Text] [Related]
24. Sequence-specific self-sorting of the binding sites of a ditopic guest by cucurbituril homologues and subsequent formation of a hetero[4]pseudorotaxane. Celtek G; Artar M; Scherman OA; Tuncel D Chemistry; 2009 Oct; 15(40):10360-3. PubMed ID: 19739220 [No Abstract] [Full Text] [Related]
25. Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Ke CF; Hou S; Zhang HY; Liu Y; Yang K; Feng XZ Chem Commun (Camb); 2007 Aug; (32):3374-6. PubMed ID: 18019503 [TBL] [Abstract][Full Text] [Related]
26. Low temperature capture of pseudorotaxanes. Hassan NI; del Amo V; Calder E; Philp D Org Lett; 2011 Feb; 13(3):458-61. PubMed ID: 21214250 [TBL] [Abstract][Full Text] [Related]
27. A highly efficient approach to [4]pseudocatenanes by threefold metathesis reactions of a triptycene-based tris[2]pseudorotaxane. Zhu XZ; Chen CF J Am Chem Soc; 2005 Sep; 127(38):13158-9. PubMed ID: 16173739 [TBL] [Abstract][Full Text] [Related]
28. Efficient preparation of separable pseudo[n]rotaxanes by selective threading of oligoalkylammonium salts with cucurbit[7]uril. Yin J; Chi C; Wu J Chemistry; 2009 Jun; 15(24):6050-7. PubMed ID: 19418514 [TBL] [Abstract][Full Text] [Related]
29. Pseudorotaxane-type n-hydrocarbon container. Metallacyclodimer of ionic palladium(II) complexes containing 1,3-bis(4-pyridyl)tetramethyldisiloxane. Ahn J; Min Kim S; Hwan Noh T; Jung OS Dalton Trans; 2011 Sep; 40(34):8520-2. PubMed ID: 21796312 [TBL] [Abstract][Full Text] [Related]
31. Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene. Cheng HB; Zhang HY; Liu Y J Am Chem Soc; 2013 Jul; 135(28):10190-3. PubMed ID: 23663074 [TBL] [Abstract][Full Text] [Related]
32. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112 [TBL] [Abstract][Full Text] [Related]
33. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. Tachibana Y; Kawasaki H; Kihara N; Takata T J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495 [TBL] [Abstract][Full Text] [Related]
34. Tetraphenylethene modified [n]rotaxanes: synthesis, characterization and aggregation-induced emission behavior. Liu G; Wu D; Liang J; Han X; Liu SH; Yin J Org Biomol Chem; 2015 Apr; 13(13):4090-100. PubMed ID: 25740623 [TBL] [Abstract][Full Text] [Related]
35. A Dual-Thermoresponsive Gemini-Type Supra-amphiphilic Macromolecular [3]Pseudorotaxane Based on Pillar[10]arene/Paraquat Cooperative Complexation. Chi X; Yu G; Shao L; Chen J; Huang F J Am Chem Soc; 2016 Mar; 138(9):3168-74. PubMed ID: 26862921 [TBL] [Abstract][Full Text] [Related]
36. Design and Synthesis of Amphiphilic and Luminescent Tris-Cyclometalated Iridium(III) Complexes Containing Cationic Peptides as Inducers and Detectors of Cell Death via a Calcium-Dependent Pathway. Hisamatsu Y; Shibuya A; Suzuki N; Suzuki T; Abe R; Aoki S Bioconjug Chem; 2015 May; 26(5):857-79. PubMed ID: 25875312 [TBL] [Abstract][Full Text] [Related]
37. A guanidinium ion-based anion- and solvent polarity-controllable molecular switch. Lin TC; Lai CC; Chiu SH Org Lett; 2009 Feb; 11(3):613-6. PubMed ID: 19105741 [TBL] [Abstract][Full Text] [Related]
38. A strong two-photon induced phosphorescent Golgi-specific in vitro marker based on a heteroleptic iridium complex. Ho CL; Wong KL; Kong HK; Ho YM; Chan CT; Kwok WM; Leung KS; Tam HL; Lam MH; Ren XF; Ren AM; Feng JK; Wong WY Chem Commun (Camb); 2012 Mar; 48(19):2525-7. PubMed ID: 22288076 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of metalated pseudorotaxane polymers with full control over the average linear density of threaded macrocycles. Kang S; Cetin MM; Jiang R; Clevenger ES; Mayer MF J Am Chem Soc; 2014 Sep; 136(36):12588-91. PubMed ID: 25153841 [TBL] [Abstract][Full Text] [Related]
40. Rational design of NIR-emitting iridium(iii) complexes for multimodal phosphorescence imaging of mitochondria under two-photon excitation. Jin C; Guan R; Wu J; Yuan B; Wang L; Huang J; Wang H; Ji L; Chao H Chem Commun (Camb); 2017 Sep; 53(75):10374-10377. PubMed ID: 28875181 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]