These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33416815)

  • 1. Oscillatory budding dynamics of a chemical garden within a co-flow of reactants.
    Spanoudaki D; Brau F; De Wit A
    Phys Chem Chem Phys; 2021 Jan; 23(2):1684-1693. PubMed ID: 33416815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genericity of confined chemical garden patterns with regard to changes in the reactants.
    Haudin F; Brasiliense V; Cartwright JH; Brau F; De Wit A
    Phys Chem Chem Phys; 2015 May; 17(19):12804-11. PubMed ID: 25908388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics.
    Ding Y; Batista B; Steinbock O; Cartwright JH; Cardoso SS
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9182-6. PubMed ID: 27486248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices.
    Wang Q; Steinbock O
    Langmuir; 2021 Feb; 37(7):2485-2493. PubMed ID: 33555186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microscopic precipitate structures on macroscopic pattern formation in reactive flows in a confined geometry.
    Balog E; Bittmann K; Schwarzenberger K; Eckert K; De Wit A; Schuszter G
    Phys Chem Chem Phys; 2019 Feb; 21(6):2910-2918. PubMed ID: 30675601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape Evolution of Precipitate Membranes in Flow Systems.
    Nogueira JA; Batista BC; Cooper MA; Steinbock O
    J Phys Chem B; 2023 Feb; 127(6):1471-1478. PubMed ID: 36745753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filament dynamics in vertical confined chemical gardens.
    Rocha LAM; Cartwright JHE; Cardoso SSS
    Chaos; 2022 May; 32(5):053107. PubMed ID: 35649986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern selection by material aging: Modeling chemical gardens in two and three dimensions.
    Batista BC; Morris AZ; Steinbock O
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2305172120. PubMed ID: 37399415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonclassical Crystallization Causes Dendritic and Band-Like Microscale Patterns in Inorganic Precipitates.
    Nogueira JA; Batista BC; Cooper MA; Steinbock O
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202306885. PubMed ID: 37463849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confined direct and reverse chemical gardens: Influence of local flow velocity on precipitation patterns.
    Ziemecka I; Brau F; De Wit A
    Chaos; 2020 Jan; 30(1):013140. PubMed ID: 32013509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of periodic perturbations on the oscillatory behavior in the NO+H2 reaction on Pt(100).
    Lemos MC; Córdoba A; de la Torre JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036116. PubMed ID: 20365824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of kinetic and transport phenomena on thermal explosion and oscillatory behaviour in a spherical reactor with mixed convection.
    Gonçalves de Azevedo F; Griffiths JF; Cardoso SS
    Phys Chem Chem Phys; 2014 Nov; 16(42):23365-78. PubMed ID: 25260181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Archimedean Spirals Form at Low Flow Rates in Confined Chemical Gardens.
    Rocha LAM; Thorne L; Wong JJ; Cartwright JHE; Cardoso SSS
    Langmuir; 2022 May; 38(21):6700-6710. PubMed ID: 35593590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and composition modification of precipitate tubes in a confined flow reactor.
    Bene K; Balog E; Schuszter G
    Phys Chem Chem Phys; 2023 Oct; 25(40):27293-27301. PubMed ID: 37791462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Evaluation of Chemical Garden Growth Techniques.
    Aslanbay Guler B; Demirel Z; Imamoglu E
    Langmuir; 2023 Sep; 39(38):13611-13619. PubMed ID: 37712591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-Assisted Self-Organization of Hybrid Membranes.
    Wang Q; Steinbock O
    Chemistry; 2019 Aug; 25(44):10427-10432. PubMed ID: 31161684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downward fingering accompanies upward tube growth in a chemical garden grown in a vertical confined geometry.
    Ding Y; Gutiérrez-Ariza CM; Zheng M; Felgate A; Lawes A; Sainz-Díaz CI; Cartwright JHE; Cardoso SSS
    Phys Chem Chem Phys; 2022 Jul; 24(29):17841-17851. PubMed ID: 35851594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction system.
    Bakes D; Schreiberová L; Schreiber I; Hauser MJ
    Chaos; 2008 Mar; 18(1):015102. PubMed ID: 18377083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic labyrinth self-assembled by a chemical garden.
    Testón-Martínez S; Huertas-Roldán T; Knoll P; Barge LM; Sainz-Díaz CI; Cartwright JHE
    Phys Chem Chem Phys; 2023 Nov; 25(44):30469-30476. PubMed ID: 37921059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional confined oscillatory dynamics of Escherichia coli strain K12-MG1655 in chemostat systems.
    Ofiţeru ID; Ferdeş M; Knapp CW; Graham DW; Lavric V
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):185-92. PubMed ID: 22086070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.