These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 33417012)
1. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Polanco JC; Hand GR; Briner A; Li C; Götz J Acta Neuropathol; 2021 Feb; 141(2):235-256. PubMed ID: 33417012 [TBL] [Abstract][Full Text] [Related]
2. Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization. Polanco JC; Götz J FEBS J; 2022 Nov; 289(22):6891-6907. PubMed ID: 34092031 [TBL] [Abstract][Full Text] [Related]
3. Role of the endolysosomal pathway and exosome release in tau propagation. Yan M; Zheng T Neurochem Int; 2021 May; 145():104988. PubMed ID: 33582164 [TBL] [Abstract][Full Text] [Related]
4. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Polanco JC; Li C; Durisic N; Sullivan R; Götz J Acta Neuropathol Commun; 2018 Feb; 6(1):10. PubMed ID: 29448966 [TBL] [Abstract][Full Text] [Related]
5. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. Polanco JC; Scicluna BJ; Hill AF; Götz J J Biol Chem; 2016 Jun; 291(24):12445-12466. PubMed ID: 27030011 [TBL] [Abstract][Full Text] [Related]
6. CRISPRi screening reveals regulators of tau pathology shared between exosomal and vesicle-free tau. Polanco JC; Akimov Y; Fernandes A; Briner A; Hand GR; van Roijen M; Balistreri G; Götz J Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36316035 [TBL] [Abstract][Full Text] [Related]
7. PIKfyve activity is required for lysosomal trafficking of tau aggregates and tau seeding. Soares AC; Ferreira A; Mariën J; Delay C; Lee E; Trojanowski JQ; Moechars D; Annaert W; De Muynck L J Biol Chem; 2021; 296():100636. PubMed ID: 33831417 [TBL] [Abstract][Full Text] [Related]
8. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. Chen JJ; Nathaniel DL; Raghavan P; Nelson M; Tian R; Tse E; Hong JY; See SK; Mok SA; Hein MY; Southworth DR; Grinberg LT; Gestwicki JE; Leonetti MD; Kampmann M J Biol Chem; 2019 Dec; 294(50):18952-18966. PubMed ID: 31578281 [TBL] [Abstract][Full Text] [Related]
9. Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice. Stancu IC; Vasconcelos B; Ris L; Wang P; Villers A; Peeraer E; Buist A; Terwel D; Baatsen P; Oyelami T; Pierrot N; Casteels C; Bormans G; Kienlen-Campard P; Octave JN; Moechars D; Dewachter I Acta Neuropathol; 2015 Jun; 129(6):875-94. PubMed ID: 25862635 [TBL] [Abstract][Full Text] [Related]
10. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer's disease. Hopp SC; Lin Y; Oakley D; Roe AD; DeVos SL; Hanlon D; Hyman BT J Neuroinflammation; 2018 Sep; 15(1):269. PubMed ID: 30227881 [TBL] [Abstract][Full Text] [Related]
11. The dual fates of exogenous tau seeds: Lysosomal clearance versus cytoplasmic amplification. Kolay S; Vega AR; Dodd DA; Perez VA; Kashmer OM; White CL; Diamond MI J Biol Chem; 2022 Jun; 298(6):102014. PubMed ID: 35525272 [TBL] [Abstract][Full Text] [Related]
12. The release and trans-synaptic transmission of Tau via exosomes. Wang Y; Balaji V; Kaniyappan S; Krüger L; Irsen S; Tepper K; Chandupatla R; Maetzler W; Schneider A; Mandelkow E; Mandelkow EM Mol Neurodegener; 2017 Jan; 12(1):5. PubMed ID: 28086931 [TBL] [Abstract][Full Text] [Related]
13. Tau fibrils induce nanoscale membrane damage and nucleate cytosolic tau at lysosomes. Rose K; Jepson T; Shukla S; Maya-Romero A; Kampmann M; Xu K; Hurley JH Proc Natl Acad Sci U S A; 2024 May; 121(22):e2315690121. PubMed ID: 38781206 [TBL] [Abstract][Full Text] [Related]
15. Truncated tau interferes with the autophagy and endolysosomal pathway and results in lipid accumulation. Pollack SJ; Dakkak D; Guo T; Chennell G; Gomez-Suaga P; Noble W; Jimenez-Sanchez M; Hanger DP Cell Mol Life Sci; 2024 Jul; 81(1):304. PubMed ID: 39009859 [TBL] [Abstract][Full Text] [Related]
16. ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. Fregno I; Fasana E; Bergmann TJ; Raimondi A; Loi M; Soldà T; Galli C; D'Antuono R; Morone D; Danieli A; Paganetti P; van Anken E; Molinari M EMBO J; 2018 Sep; 37(17):. PubMed ID: 30076131 [TBL] [Abstract][Full Text] [Related]
17. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. McEwan WA; Falcon B; Vaysburd M; Clift D; Oblak AL; Ghetti B; Goedert M; James LC Proc Natl Acad Sci U S A; 2017 Jan; 114(3):574-579. PubMed ID: 28049840 [TBL] [Abstract][Full Text] [Related]
18. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Wang Y; Martinez-Vicente M; Krüger U; Kaushik S; Wong E; Mandelkow EM; Cuervo AM; Mandelkow E Hum Mol Genet; 2009 Nov; 18(21):4153-70. PubMed ID: 19654187 [TBL] [Abstract][Full Text] [Related]
19. Apolipoprotein E4 genotype compromises brain exosome production. Peng KY; Pérez-González R; Alldred MJ; Goulbourne CN; Morales-Corraliza J; Saito M; Saito M; Ginsberg SD; Mathews PM; Levy E Brain; 2019 Jan; 142(1):163-175. PubMed ID: 30496349 [TBL] [Abstract][Full Text] [Related]