BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33417035)

  • 1. Insights into the combination of neuromuscular electrical stimulation and motor imagery in a training-based approach.
    Bouguetoch A; Martin A; Grosprêtre S
    Eur J Appl Physiol; 2021 Mar; 121(3):941-955. PubMed ID: 33417035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can motor imagery balance the acute fatigue induced by neuromuscular electrical stimulation?
    Eon P; Grosprêtre S; Martin A
    Eur J Appl Physiol; 2023 May; 123(5):1003-1014. PubMed ID: 36622447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does partial activation of the neuromuscular system induce cross-education training effect? Case of a pilot study on motor imagery and neuromuscular electrical stimulation.
    Bouguetoch A; Martin A; Grosprêtre S
    Eur J Appl Physiol; 2021 Aug; 121(8):2337-2348. PubMed ID: 33997913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction.
    Borzuola R; Labanca L; Macaluso A; Laudani L
    Eur J Appl Physiol; 2020 Sep; 120(9):2105-2113. PubMed ID: 32676751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training.
    Gondin J; Duclay J; Martin A
    J Neurophysiol; 2006 Jun; 95(6):3328-35. PubMed ID: 16481458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural drive preservation after detraining following neuromuscular electrical stimulation training.
    Gondin J; Duclay J; Martin A
    Neurosci Lett; 2006 Dec; 409(3):210-4. PubMed ID: 17027149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular adaptations to wide-pulse high-frequency neuromuscular electrical stimulation training.
    Neyroud D; Gonzalez M; Mueller S; Agostino D; Grosprêtre S; Maffiuletti NA; Kayser B; Place N
    Eur J Appl Physiol; 2019 May; 119(5):1105-1116. PubMed ID: 30778761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural mechanisms of strength increase after one-week motor imagery training.
    Grosprêtre S; Jacquet T; Lebon F; Papaxanthis C; Martin A
    Eur J Sport Sci; 2018 Mar; 18(2):209-218. PubMed ID: 29249176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery pattern of motor reflex after a single bout of neuromuscular electrical stimulation session.
    Laurin J; Dousset E; Carrivale R; Grélot L; Decherchi P
    Scand J Med Sci Sports; 2012 Aug; 22(4):534-44. PubMed ID: 21362055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central Contribution to Electrically Induced Fatigue depends on Stimulation Frequency.
    Grosprêtre S; Gueugneau N; Martin A; Lepers R
    Med Sci Sports Exerc; 2017 Aug; 49(8):1530-1540. PubMed ID: 28291023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of acute responses in spinal excitability between older and young people after neuromuscular electrical stimulation.
    Scalia M; Parrella M; Borzuola R; Macaluso A
    Eur J Appl Physiol; 2024 Jan; 124(1):353-363. PubMed ID: 37524980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in spinal but not cortical excitability following combined electrical stimulation of the tibial nerve and voluntary plantar-flexion.
    Lagerquist O; Mang CS; Collins DF
    Exp Brain Res; 2012 Oct; 222(1-2):41-53. PubMed ID: 22899312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H-reflex and M-wave responses after voluntary and electrically evoked muscle cramping.
    Harmsen JF; Latella C; Mesquita R; Fasse A; Schumann M; Behringer M; Taylor J; Nosaka K
    Eur J Appl Physiol; 2021 Feb; 121(2):659-672. PubMed ID: 33245422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.
    Gueugneau N; Grosprêtre S; Stapley P; Lepers R
    J Neurophysiol; 2017 Jan; 117(1):467-475. PubMed ID: 27832594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal plasticity with motor imagery practice.
    Grosprêtre S; Lebon F; Papaxanthis C; Martin A
    J Physiol; 2019 Feb; 597(3):921-934. PubMed ID: 30417924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torque gains and neural adaptations following low-intensity motor nerve electrical stimulation training.
    Vitry F; Martin A; Papaiordanidou M
    J Appl Physiol (1985); 2019 Nov; 127(5):1469-1477. PubMed ID: 31545155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of neuromuscular electrical stimulation intensity over the tibial nerve trunk on triceps surae muscle fatigue.
    Doix AC; Matkowski B; Martin A; Roeleveld K; Colson SS
    Eur J Appl Physiol; 2014 Feb; 114(2):317-29. PubMed ID: 24281826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute effects of neuromuscular electrical stimulation on cortical dynamics and reflex activation.
    Borzuola R; Quinzi F; Scalia M; Pitzalis S; Di Russo F; Macaluso A
    J Neurophysiol; 2023 Jun; 129(6):1310-1321. PubMed ID: 37162183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic inhibition mechanisms may subserve the spinal excitability modulation induced by neuromuscular electrical stimulation.
    Grosprêtre S; Gueugneau N; Martin A; Lepers R
    J Electromyogr Kinesiol; 2018 Jun; 40():95-101. PubMed ID: 29705497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles.
    Kato T; Sasaki A; Yokoyama H; Milosevic M; Nakazawa K
    Exp Brain Res; 2019 Dec; 237(12):3195-3205. PubMed ID: 31602493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.