BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33417261)

  • 1. A highly efficient nanoscale tapioca starch prepared by high-speed jet for Cu
    Lian F; Huang X; Lin Y; Xia W; Fu T; Wang F; He D; Zhou W; Li J
    J Sci Food Agric; 2021 Aug; 101(10):4298-4307. PubMed ID: 33417261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Simple One-Step Modification of Shrimp Shell for the Efficient Adsorption and Desorption of Copper Ions.
    Liu C; Wen H; Chen K; Chen Y
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.
    Mushtaq M; Bhatti HN; Iqbal M; Noreen S
    J Environ Manage; 2016 Jul; 176():21-33. PubMed ID: 27039361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide.
    Huang YH; Hsueh CL; Cheng HP; Su LC; Chen CY
    J Hazard Mater; 2007 Jun; 144(1-2):406-11. PubMed ID: 17118550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of copper(II) ions from aqueous solution by modified bagasse.
    Jiang Y; Pang H; Liao B
    J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An all-biopolymer self-assembling hydrogel film consisting of chitosan and carboxymethyl guar gum: A novel bio-based composite adsorbent for Cu
    Rahmatpour A; Alijani N
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124878. PubMed ID: 37187419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study.
    Aljerf L
    J Environ Manage; 2018 Nov; 225():120-132. PubMed ID: 30075305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions.
    Renault F; Morin-Crini N; Gimbert F; Badot PM; Crini G
    Bioresour Technol; 2008 Nov; 99(16):7573-86. PubMed ID: 18403200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu(II) ion removal from aqueous solutions.
    Saber M; Takahashi F; Yoshikawa K
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32721-32734. PubMed ID: 30244443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent.
    Aman T; Kazi AA; Sabri MU; Bano Q
    Colloids Surf B Biointerfaces; 2008 May; 63(1):116-21. PubMed ID: 18215510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(II) from solutions.
    Kong Z; Li X; Tian J; Yang J; Sun S
    J Environ Manage; 2014 Feb; 134():109-16. PubMed ID: 24473344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium and kinetics characteristics of copper (II) sorption onto gyttja.
    Dikici H; Saltali K; Bingölbali S
    Bull Environ Contam Toxicol; 2010 Jan; 84(1):147-51. PubMed ID: 19907911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic spectral and kinetic analysis of the removal of Cu(II) from aqueous solution by sodium carbonate treated rice husk.
    Acharya J; Kumar U; Meikap BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):801-809. PubMed ID: 30966870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment.
    Zhang X; Lin X; He Y; Chen Y; Luo X; Shang R
    Int J Biol Macromol; 2019 Mar; 124():418-428. PubMed ID: 30496862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Cu(II) from aqueous solution by adsorption on Chinese Quaternary loess: kinetics and equilibrium studies.
    Tang XW; Li ZZ; Chen YM; Wang Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):779-91. PubMed ID: 18444081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass Potential of Virgin and Calcined Tapioca (Cassava Starch) for the Removal of Sr(II) and Cs(I) from Aqueous Solutions.
    Ogata F; Nagai N; Ueta E; Nakamura T; Kawasaki N
    Chem Pharm Bull (Tokyo); 2018; 66(3):295-302. PubMed ID: 29491262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of Cu
    Xu L; Cui H; Zheng X; Liang J; Xing X; Yao L; Chen Z; Zhou J
    Water Sci Technol; 2017 Apr; 2017(1):115-125. PubMed ID: 29698227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Cu(II) from aqueous solutions using chemically modified chitosan.
    Kannamba B; Reddy KL; AppaRao BV
    J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents.
    Aydin H; Bulut Y; Yerlikaya C
    J Environ Manage; 2008 Apr; 87(1):37-45. PubMed ID: 17349732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.