These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33417576)

  • 1. Frame-Correlation Transfers Trigger Economical Attacks on Deep Reinforcement Learning Policies.
    Qu X; Ong YS; Gupta A
    IEEE Trans Cybern; 2022 Aug; 52(8):7577-7590. PubMed ID: 33417576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization.
    Xing J; Nagata T; Zou X; Neftci E; Krichmar JL
    Neural Netw; 2023 Apr; 161():228-241. PubMed ID: 36774862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Black-box attacks on dynamic graphs via adversarial topology perturbations.
    Tao H; Cao J; Chen L; Sun H; Shi Y; Zhu X
    Neural Netw; 2024 Mar; 171():308-319. PubMed ID: 38104509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adversary Agnostic Robust Deep Reinforcement Learning.
    Qu X; Gupta A; Ong YS; Sun Z
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6146-6157. PubMed ID: 34936559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems.
    Wang S; Cao Y; Chen X; Yao L; Wang X; Sheng QZ
    Front Big Data; 2022; 5():822783. PubMed ID: 35592793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELAA: An Ensemble-Learning-Based Adversarial Attack Targeting Image-Classification Model.
    Fu Z; Cui X
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adversarial attack vulnerability of medical image analysis systems: Unexplored factors.
    Bortsova G; González-Gonzalo C; Wetstein SC; Dubost F; Katramados I; Hogeweg L; Liefers B; van Ginneken B; Pluim JPW; Veta M; Sánchez CI; de Bruijne M
    Med Image Anal; 2021 Oct; 73():102141. PubMed ID: 34246850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to Atari Breakout game.
    Patel D; Hazan H; Saunders DJ; Siegelmann HT; Kozma R
    Neural Netw; 2019 Dec; 120():108-115. PubMed ID: 31500931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.
    Lu M; Shahn Z; Sow D; Doshi-Velez F; Lehman LH
    AMIA Annu Symp Proc; 2020; 2020():773-782. PubMed ID: 33936452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse Adversarial Video Attacks via Superpixel-Based Jacobian Computation.
    Du Z; Liu F; Yan X
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach.
    Pan J; Huang J; Cheng G; Zeng Y
    Neural Netw; 2023 Jan; 157():288-304. PubMed ID: 36375347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-level performance in 3D multiplayer games with population-based reinforcement learning.
    Jaderberg M; Czarnecki WM; Dunning I; Marris L; Lever G; Castañeda AG; Beattie C; Rabinowitz NC; Morcos AS; Ruderman A; Sonnerat N; Green T; Deason L; Leibo JZ; Silver D; Hassabis D; Kavukcuoglu K; Graepel T
    Science; 2019 May; 364(6443):859-865. PubMed ID: 31147514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An autonomous decision-making framework for gait recognition systems against adversarial attack using reinforcement learning.
    Maqsood M; Yasmin S; Gillani S; Aadil F; Mehmood I; Rho S; Yeo SS
    ISA Trans; 2023 Jan; 132():80-93. PubMed ID: 36494214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferability of features for neural networks links to adversarial attacks and defences.
    Kotyan S; Matsuki M; Vargas DV
    PLoS One; 2022; 17(4):e0266060. PubMed ID: 35476838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample Efficient Deep Reinforcement Learning With Online State Abstraction and Causal Transformer Model Prediction.
    Lan Y; Xu X; Fang Q; Hao J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37581972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transatlantic transferability of a new reinforcement learning model for optimizing haemodynamic treatment for critically ill patients with sepsis.
    Roggeveen L; El Hassouni A; Ahrendt J; Guo T; Fleuren L; Thoral P; Girbes AR; Hoogendoorn M; Elbers PW
    Artif Intell Med; 2021 Feb; 112():102003. PubMed ID: 33581824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized attention-weighted reinforcement learning.
    Bramlage L; Cortese A
    Neural Netw; 2022 Jan; 145():10-21. PubMed ID: 34710787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When Not to Classify: Anomaly Detection of Attacks (ADA) on DNN Classifiers at Test Time.
    Miller D; Wang Y; Kesidis G
    Neural Comput; 2019 Aug; 31(8):1624-1670. PubMed ID: 31260390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.