BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3341774)

  • 1. Superoxide dismutase induces differentiation in microplasmodia of the slime mold Physarum polycephalum.
    Allen RG; Balin AK; Reimer RJ; Sohal RS; Nations C
    Arch Biochem Biophys; 1988 Feb; 261(1):205-11. PubMed ID: 3341774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in superoxide dismutase, glutathione, and peroxides in the plasmodial slime mold Physarum polycephalum during differentiation.
    Allen RG; Newton RK; Sohal RS; Shipley GL; Nations C
    J Cell Physiol; 1985 Dec; 125(3):413-9. PubMed ID: 4066766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide dismutase activity and glutathione concentration during the calcium-induced differentiation of Physarum polycephalum microplasmodia.
    Nations C; Allen RG; Balin AK; Reimer RJ; Sohal RS
    J Cell Physiol; 1987 Oct; 133(1):181-6. PubMed ID: 3667705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the free radical generator paraquat on differentiation, superoxide dismutase, glutathione and inorganic peroxides in microplasmodia of Physarum polycephalum.
    Allen RG; Newton RK; Farmer KJ; Nations C
    Cell Tissue Kinet; 1985 Nov; 18(6):623-30. PubMed ID: 4064105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of Glutathione in the Differentiation of the Slime Mold Physarum polycephalum: (cellular differentiation/Physarum/oxy-free radicals/superoxide dismutase/glutathione).
    Allen RG; Farmer KJ; Toy PL; Newton RK; Sohal RS; Nations C
    Dev Growth Differ; 1985; 27(5):615-620. PubMed ID: 37281428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological oxidation and the mobilization of mitochondrial calcium during the differentiation of Physarum polycephalum.
    Nations C; Allison VF; Aldrich HC; Allen RG
    J Cell Physiol; 1989 Aug; 140(2):311-6. PubMed ID: 2745566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of UDP-glucose: poriferasterol glucosyltransferase in the process of differentiation of a true slime mold, Physarum polycephalum.
    Murakami-Murofushi K; Ohta J
    Biochim Biophys Acta; 1989 Sep; 992(3):412-5. PubMed ID: 2528379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topoisomerase I in actively growing plasmodia and during differentiation of the slime mold Physarum polycephalum.
    Staron K; Kowalska-Loth B; Czerwinski RM; Bandorowska J; Guberska J
    Biochim Biophys Acta; 1991 Jan; 1088(1):36-40. PubMed ID: 1846567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptor pigment that induces differentiation in the slime mold Physarum polycephalum.
    Wormington WM; Weaver RF
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3896-9. PubMed ID: 1069274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminopeptidases of Physarum polycephalum. Activity, isoenzyme pattern, and synthesis during differentiation.
    Hoffmann W; Hüttermann A
    J Biol Chem; 1975 Sep; 250(18):7420-7. PubMed ID: 1172502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of histone H1(0) in Physarum polycephalum. Its high level in the plasmodial stage increases in amount and phosphorylation in the sclerotial stage.
    Yasuda H; Mueller RD; Logan KA; Bradbury EM
    J Biol Chem; 1986 Feb; 261(5):2349-54. PubMed ID: 3944138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and partial characterization of transglutaminase from Physarum polycephalum.
    Klein JD; Guzman E; Kuehn GD
    J Bacteriol; 1992 Apr; 174(8):2599-605. PubMed ID: 1348244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of expression and localization of two mammalian-type transglutaminases in Physarum polycephalum, an acellular slime mold.
    Wada F; Ogawa A; Hanai Y; Nakamura A; Maki M; Hitomi K
    J Biochem; 2004 Nov; 136(5):665-72. PubMed ID: 15632307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometry of the differentiation of Physarum polycephalum myxamoebae to cysts.
    Fry J; Matthews HR
    Exp Cell Res; 1987 Jan; 168(1):173-81. PubMed ID: 3780871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sporulation-inducing factor in slime mould Physarum polycephalum.
    Wormington WM; Cho CG; Weaver RF
    Nature; 1975 Jul; 256(5516):413-4. PubMed ID: 1170501
    [No Abstract]   [Full Text] [Related]  

  • 16. Changes in diadenosine tetraphosphate levels in Physarum polycephalum with different oxygen concentrations.
    Garrison PN; Mathis SA; Barnes LD
    J Bacteriol; 1989 Mar; 171(3):1506-12. PubMed ID: 2921243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometry reveals a high degree of genomic size variation and mixoploidy in various strains of the acellular slime mold Physarum polycephalum.
    Kubbies M; Wick R; Hildebrandt A; Sauer HW
    Cytometry; 1986 Sep; 7(5):481-5. PubMed ID: 3757696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,4-alpha-Glucan phosphorylase from the slime mold Physarum polycephalum. Purification, physico-chemical and kinetic properties.
    Nader W; Becker JU
    Eur J Biochem; 1979 Dec; 102(2):345-55. PubMed ID: 527584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physarum machines: encapsulating reaction-diffusion to compute spanning tree.
    Adamatzky A
    Naturwissenschaften; 2007 Dec; 94(12):975-80. PubMed ID: 17603779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in ATP-pyrophosphohydrolase activity during spherule formation of Physarum polycephalum.
    Kawamura M; Tonotsuka N; Nagano K
    Biochim Biophys Acta; 1976 Feb; 421(2):195-202. PubMed ID: 175839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.