These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33417893)

  • 61. Human scalp evoked potentials related to the fusion between a sound source and its simulated reflection.
    Huang Y; Lu H; Li L
    PLoS One; 2019; 14(1):e0209173. PubMed ID: 30625162
    [TBL] [Abstract][Full Text] [Related]  

  • 62. EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans.
    Mayhew SD; Dirckx SG; Niazy RK; Iannetti GD; Wise RG
    Neuroimage; 2010 Jan; 49(1):849-64. PubMed ID: 19591945
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intracerebral evidence of rhythm transform in the human auditory cortex.
    Nozaradan S; Mouraux A; Jonas J; Colnat-Coulbois S; Rossion B; Maillard L
    Brain Struct Funct; 2017 Jul; 222(5):2389-2404. PubMed ID: 27990557
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Neural generators underlying concurrent sound segregation.
    Arnott SR; Bardouille T; Ross B; Alain C
    Brain Res; 2011 Apr; 1387():116-24. PubMed ID: 21362407
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Mismatch Negativity: An Indicator of Perception of Regularities in Music.
    Yu X; Liu T; Gao D
    Behav Neurol; 2015; 2015():469508. PubMed ID: 26504352
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simultaneous EEG and MEG recordings reveal vocal pitch elicited cortical gamma oscillations in young and older adults.
    Ross B; Tremblay KL; Alain C
    Neuroimage; 2020 Jan; 204():116253. PubMed ID: 31600592
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Auditory processing indexed by stimulus-induced alpha desynchronization in children.
    Fujioka T; Ross B
    Int J Psychophysiol; 2008 May; 68(2):130-40. PubMed ID: 18331761
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Auditory long latency responses to tonal and speech stimuli.
    Swink S; Stuart A
    J Speech Lang Hear Res; 2012 Apr; 55(2):447-59. PubMed ID: 22199192
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Age-related differences in sensitivity to small changes in frequency assessed with cortical evoked potentials.
    Harris KC; Mills JH; He NJ; Dubno JR
    Hear Res; 2008 Sep; 243(1-2):47-56. PubMed ID: 18597958
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Auditory steady-state responses during and after a stimulus: Cortical sources, and the influence of attention and musicality.
    Manting CL; Gulyas B; Ullén F; Lundqvist D
    Neuroimage; 2021 Jun; 233():117962. PubMed ID: 33744455
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].
    Milner R; Rusiniak M; Wolak T; Piatkowska-Janko E; Naumczyk P; Bogorodzki P; Senderski A; Ganc M; Skarzyński H
    Otolaryngol Pol; 2011; 65(3):171-83. PubMed ID: 21916216
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Different contra-sound effects between noise and music stimuli seen in N1m and psychophysical responses.
    Shirakura M; Kawase T; Kanno A; Ohta J; Nakasato N; Kawashima R; Katori Y
    PLoS One; 2021; 16(12):e0261637. PubMed ID: 34928999
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Neuromagnetic responses in silence after musical chord sequences.
    Otsuka A; Tamaki Y; Kuriki S
    Neuroreport; 2008 Oct; 19(16):1637-41. PubMed ID: 18815583
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.
    Ross B
    J Neurophysiol; 2008 Sep; 100(3):1265-77. PubMed ID: 18632891
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Vowel processing evokes a large sustained response anterior to primary auditory cortex.
    Hewson-Stoate N; Schönwiesner M; Krumbholz K
    Eur J Neurosci; 2006 Nov; 24(9):2661-71. PubMed ID: 17100854
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tracing the neural basis of auditory entrainment.
    Lehmann A; Arias DJ; Schönwiesner M
    Neuroscience; 2016 Nov; 337():306-314. PubMed ID: 27667358
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cortical encoding of melodic expectations in human temporal cortex.
    Di Liberto GM; Pelofi C; Bianco R; Patel P; Mehta AD; Herrero JL; de Cheveigné A; Shamma S; Mesgarani N
    Elife; 2020 Mar; 9():. PubMed ID: 32122465
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Do video sounds interfere with auditory event-related potentials?
    McArthur GM; Bishop DV; Proudfoot M
    Behav Res Methods Instrum Comput; 2003 May; 35(2):329-33. PubMed ID: 12834093
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of aging on event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone.
    Ungan P; Yagcioglu S; Ayik E
    Brain Res; 2020 Aug; 1740():146849. PubMed ID: 32330517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.