These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33417957)
81. Treatment with crocin suppresses diabetic nephropathy progression via modulating TGF-β1 and oxidative stress in an experimental model of pinealectomized diabetic rats. Ali Hammood Keelo RM; Elbe H; Bicer Y; Yigitturk G; Koca O; Karayakali M; Acar D; Altinoz E Chem Biol Interact; 2022 Jan; 351():109733. PubMed ID: 34743986 [TBL] [Abstract][Full Text] [Related]
82. Prevention of progression of diabetic nephropathy by the SGLT2 inhibitor ipragliflozin in uninephrectomized type 2 diabetic mice. Tahara A; Takasu T Eur J Pharmacol; 2018 Jul; 830():68-75. PubMed ID: 29702076 [TBL] [Abstract][Full Text] [Related]
83. Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Liu GC; Fang F; Zhou J; Koulajian K; Yang S; Lam L; Reich HN; John R; Herzenberg AM; Giacca A; Oudit GY; Scholey JW Diabetologia; 2012 Sep; 55(9):2522-32. PubMed ID: 22653270 [TBL] [Abstract][Full Text] [Related]
84. Role of Oxidative Stress and Reduced Endogenous Hydrogen Sulfide in Diabetic Nephropathy. Hussain Lodhi A; Ahmad FU; Furwa K; Madni A Drug Des Devel Ther; 2021; 15():1031-1043. PubMed ID: 33707940 [TBL] [Abstract][Full Text] [Related]
85. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Vallon V; Rose M; Gerasimova M; Satriano J; Platt KA; Koepsell H; Cunard R; Sharma K; Thomson SC; Rieg T Am J Physiol Renal Physiol; 2013 Jan; 304(2):F156-67. PubMed ID: 23152292 [TBL] [Abstract][Full Text] [Related]
86. Renal expression of proto-oncogene Ets-1 on matrix remodeling in experimental diabetic nephropathy. Liu DX; Liu XM; Su Y; Zhang XJ Acta Histochem; 2011 Sep; 113(5):527-33. PubMed ID: 20598359 [TBL] [Abstract][Full Text] [Related]
87. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. Rysz J; Banach M; Stolarek RA; Pasnik J; Cialkowska-Rysz A; Koktysz R; Piechota M; Baj Z J Nephrol; 2007; 20(4):444-52. PubMed ID: 17879211 [TBL] [Abstract][Full Text] [Related]
88. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Al-Hussaini H; Kilarkaje N Toxicol Appl Pharmacol; 2018 Jan; 339():97-109. PubMed ID: 29229234 [TBL] [Abstract][Full Text] [Related]
90. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. McLennan SV; Kelly DJ; Cox AJ; Cao Z; Lyons JG; Yue DK; Gilbert RE Diabetologia; 2002 Feb; 45(2):268-75. PubMed ID: 11935159 [TBL] [Abstract][Full Text] [Related]
91. Camel milk attenuates the biochemical and morphological features of diabetic nephropathy: inhibition of Smad1 and collagen type IV synthesis. Korish AA; Abdel Gader AG; Korashy HM; Al-Drees AM; Alhaider AA; Arafah MM Chem Biol Interact; 2015 Mar; 229():100-8. PubMed ID: 25617480 [TBL] [Abstract][Full Text] [Related]
92. ChREBP deficiency alleviates apoptosis by inhibiting TXNIP/oxidative stress in diabetic nephropathy. Chen N; Song S; Yang Z; Wu M; Mu L; Zhou T; Shi Y J Diabetes Complications; 2021 Dec; 35(12):108050. PubMed ID: 34600826 [TBL] [Abstract][Full Text] [Related]
93. Gallic acid attenuates type I diabetic nephropathy in rats. Garud MS; Kulkarni YA Chem Biol Interact; 2018 Feb; 282():69-76. PubMed ID: 29331653 [TBL] [Abstract][Full Text] [Related]
94. Protective Effects of Curcumin on Renal Oxidative Stress and Lipid Metabolism in a Rat Model of Type 2 Diabetic Nephropathy. Kim BH; Lee ES; Choi R; Nawaboot J; Lee MY; Lee EY; Kim HS; Chung CH Yonsei Med J; 2016 May; 57(3):664-73. PubMed ID: 26996567 [TBL] [Abstract][Full Text] [Related]
95. Triphala Ameliorates Nephropathy via Inhibition of TGF-β1 and Oxidative Stress in Diabetic Rats. Suryavanshi SV; Garud MS; Barve K; Addepalli V; Utpat SV; Kulkarni YA Pharmacology; 2020; 105(11-12):681-691. PubMed ID: 32674108 [TBL] [Abstract][Full Text] [Related]
96. Effect of retinoic acid in experimental diabetic nephropathy. Han SY; So GA; Jee YH; Han KH; Kang YS; Kim HK; Kang SW; Han DS; Han JY; Cha DR Immunol Cell Biol; 2004 Dec; 82(6):568-76. PubMed ID: 15550114 [TBL] [Abstract][Full Text] [Related]
97. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Malik S; Suchal K; Khan SI; Bhatia J; Kishore K; Dinda AK; Arya DS Am J Physiol Renal Physiol; 2017 Aug; 313(2):F414-F422. PubMed ID: 28566504 [TBL] [Abstract][Full Text] [Related]
98. [Effect of Chinese herbal medicine with Supplement Qi and Activating Blood Circulation on tubular reabsorption function of diabetic nephropathy rats]. Yin JJ; Yang Y; Wang QB; Li Y; Yin DK Zhong Yao Cai; 2013 Jun; 36(6):953-8. PubMed ID: 24380284 [TBL] [Abstract][Full Text] [Related]
99. Green tea infusion prevents diabetic nephropathy aggravation in recent-onset type 1 diabetes regardless of glycemic control. Ladeira LCM; Dos Santos EC; Santos TA; da Silva J; Lima GDA; Machado-Neves M; da Silva RC; Freitas MB; Maldonado IRDSC J Ethnopharmacol; 2021 Jun; 274():114032. PubMed ID: 33737142 [TBL] [Abstract][Full Text] [Related]
100. Decrease of Klotho in the kidney of streptozotocin-induced diabetic rats. Cheng MF; Chen LJ; Cheng JT J Biomed Biotechnol; 2010; 2010():513853. PubMed ID: 20625492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]