These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Comprehensive speed breeding: a high-throughput and rapid generation system for long-day crops. Song Y; Duan X; Wang P; Li X; Yuan X; Wang Z; Wan L; Yang G; Hong D Plant Biotechnol J; 2022 Jan; 20(1):13-15. PubMed ID: 34651404 [No Abstract] [Full Text] [Related]
8. Genetics and breeding for climate change in Orphan crops. Kamenya SN; Mikwa EO; Song B; Odeny DA Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565 [TBL] [Abstract][Full Text] [Related]
9. Integrating speed breeding with artificial intelligence for developing climate-smart crops. Rai KK Mol Biol Rep; 2022 Dec; 49(12):11385-11402. PubMed ID: 35941420 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Hickey JM; Chiurugwi T; Mackay I; Powell W; Nat Genet; 2017 Aug; 49(9):1297-1303. PubMed ID: 28854179 [TBL] [Abstract][Full Text] [Related]
12. When more is better: how data sharing would accelerate genomic selection of crop plants. Spindel JE; McCouch SR New Phytol; 2016 Dec; 212(4):814-826. PubMed ID: 27716975 [TBL] [Abstract][Full Text] [Related]
13. Advances and Challenges in Genomic Selection for Disease Resistance. Poland J; Rutkoski J Annu Rev Phytopathol; 2016 Aug; 54():79-98. PubMed ID: 27491433 [TBL] [Abstract][Full Text] [Related]
14. Breeding crops to feed 10 billion. Hickey LT; N Hafeez A; Robinson H; Jackson SA; Leal-Bertioli SCM; Tester M; Gao C; Godwin ID; Hayes BJ; Wulff BBH Nat Biotechnol; 2019 Jul; 37(7):744-754. PubMed ID: 31209375 [TBL] [Abstract][Full Text] [Related]
15. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Ghosh S; Watson A; Gonzalez-Navarro OE; Ramirez-Gonzalez RH; Yanes L; Mendoza-Suárez M; Simmonds J; Wells R; Rayner T; Green P; Hafeez A; Hayta S; Melton RE; Steed A; Sarkar A; Carter J; Perkins L; Lord J; Tester M; Osbourn A; Moscou MJ; Nicholson P; Harwood W; Martin C; Domoney C; Uauy C; Hazard B; Wulff BBH; Hickey LT Nat Protoc; 2018 Dec; 13(12):2944-2963. PubMed ID: 30446746 [TBL] [Abstract][Full Text] [Related]
16. Genome-based breeding approaches in major vegetable crops. Hao N; Han D; Huang K; Du Y; Yang J; Zhang J; Wen C; Wu T Theor Appl Genet; 2020 May; 133(5):1739-1752. PubMed ID: 31728564 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Rasheed A; Wen W; Gao F; Zhai S; Jin H; Liu J; Guo Q; Zhang Y; Dreisigacker S; Xia X; He Z Theor Appl Genet; 2016 Oct; 129(10):1843-60. PubMed ID: 27306516 [TBL] [Abstract][Full Text] [Related]
18. Blurring the boundaries between cereal crops and model plants. Borrill P New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228 [TBL] [Abstract][Full Text] [Related]
19. Overview of the Wheat Genetic Transformation and Breeding Status in China. Han J; Yu X; Chang J; Yang G; He G Methods Mol Biol; 2017; 1679():37-60. PubMed ID: 28913793 [TBL] [Abstract][Full Text] [Related]
20. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Mascher M; Schreiber M; Scholz U; Graner A; Reif JC; Stein N Nat Genet; 2019 Jul; 51(7):1076-1081. PubMed ID: 31253974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]