These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33418269)

  • 1. New genomic approaches for enhancing maize genetic improvement.
    Yang N; Yan J
    Curr Opin Plant Biol; 2021 Apr; 60():101977. PubMed ID: 33418269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties.
    Rojas-Barrera IC; Wegier A; Sánchez González JJ; Owens GL; Rieseberg LH; Piñero D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21302-21311. PubMed ID: 31570572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introgression from modern hybrid varieties into landrace populations of maize (Zea mays ssp. mays L.) in central Italy.
    Bitocchi E; Nanni L; Rossi M; Rau D; Bellucci E; Giardini A; Buonamici A; Vendramin GG; Papa R
    Mol Ecol; 2009 Feb; 18(4):603-21. PubMed ID: 19215582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teosinte as a model system for population and ecological genomics.
    Hufford MB; Bilinski P; Pyhäjärvi T; Ross-Ibarra J
    Trends Genet; 2012 Dec; 28(12):606-15. PubMed ID: 23021022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome size variation in wild and cultivated maize along altitudinal gradients.
    Díez CM; Gaut BS; Meca E; Scheinvar E; Montes-Hernandez S; Eguiarte LE; Tenaillon MI
    New Phytol; 2013 Jul; 199(1):264-276. PubMed ID: 23550586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative population genomics of maize domestication and improvement.
    Hufford MB; Xu X; van Heerwaarden J; Pyhäjärvi T; Chia JM; Cartwright RA; Elshire RJ; Glaubitz JC; Guill KE; Kaeppler SM; Lai J; Morrell PL; Shannon LM; Song C; Springer NM; Swanson-Wagner RA; Tiffin P; Wang J; Zhang G; Doebley J; McMullen MD; Ware D; Buckler ES; Yang S; Ross-Ibarra J
    Nat Genet; 2012 Jun; 44(7):808-11. PubMed ID: 22660546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize.
    Aguirre-Liguori JA; Ramírez-Barahona S; Tiffin P; Eguiarte LE
    Proc Biol Sci; 2019 Jul; 286(1906):20190486. PubMed ID: 31290364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intragenic modification of maize.
    Almeraya EV; Sánchez-de-Jiménez E
    J Biotechnol; 2016 Nov; 238():35-41. PubMed ID: 27641689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication.
    Ramos-Madrigal J; Smith BD; Moreno-Mayar JV; Gopalakrishnan S; Ross-Ibarra J; Gilbert MTP; Wales N
    Curr Biol; 2016 Dec; 26(23):3195-3201. PubMed ID: 27866890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic, evolutionary and plant breeding insights from the domestication of maize.
    Hake S; Ross-Ibarra J
    Elife; 2015 Mar; 4():. PubMed ID: 25807085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technological advances in maize breeding: past, present and future.
    Andorf C; Beavis WD; Hufford M; Smith S; Suza WP; Wang K; Woodhouse M; Yu J; Lübberstedt T
    Theor Appl Genet; 2019 Mar; 132(3):817-849. PubMed ID: 30798332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop Genomics Goes Beyond a Single Reference Genome.
    Tao Y; Jordan DR; Mace ES
    Trends Plant Sci; 2019 Dec; 24(12):1072-1074. PubMed ID: 31648939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In praise of maize.
    Nat Genet; 2010 Dec; 42(12):1031. PubMed ID: 21102616
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture.
    Yang Z; Cao Y; Shi Y; Qin F; Jiang C; Yang S
    Mol Plant; 2023 Oct; 16(10):1496-1517. PubMed ID: 37464740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.
    Baltazar BM; Castro Espinoza L; Espinoza Banda A; de la Fuente Martínez JM; Garzón Tiznado JA; González García J; Gutiérrez MA; Guzmán Rodríguez JL; Heredia Díaz O; Horak MJ; Madueño Martínez JI; Schapaugh AW; Stojšin D; Uribe Montes HR; Zavala García F
    PLoS One; 2015; 10(7):e0131549. PubMed ID: 26162097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea.
    González GE; Poggio L
    Genome; 2015 Oct; 58(10):433-9. PubMed ID: 26506040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.