These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 33418276)
1. Glycolysis-induced drug resistance in tumors-A response to danger signals? Marcucci F; Rumio C Neoplasia; 2021 Feb; 23(2):234-245. PubMed ID: 33418276 [TBL] [Abstract][Full Text] [Related]
2. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217 [TBL] [Abstract][Full Text] [Related]
3. The Role of Oxidative Metabolism in Tumorigenesis and Drug Resistance. Marcucci F; Rumio C Discov Med; 2024 Jun; 36(185):1109-1126. PubMed ID: 38926098 [TBL] [Abstract][Full Text] [Related]
4. Tumor Cell Glycolysis-At the Crossroad of Epithelial-Mesenchymal Transition and Autophagy. Marcucci F; Rumio C Cells; 2022 Mar; 11(6):. PubMed ID: 35326492 [TBL] [Abstract][Full Text] [Related]
6. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Sui H; Zhu L; Deng W; Li Q Oncol Res Treat; 2014; 37(10):584-9. PubMed ID: 25342509 [TBL] [Abstract][Full Text] [Related]
7. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Erin N; Grahovac J; Brozovic A; Efferth T Drug Resist Updat; 2020 Dec; 53():100715. PubMed ID: 32679188 [TBL] [Abstract][Full Text] [Related]
8. Mitochondria and cancer chemoresistance. Guerra F; Arbini AA; Moro L Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329 [TBL] [Abstract][Full Text] [Related]
9. Energy metabolism in tumor cells. Moreno-Sánchez R; Rodríguez-Enríquez S; Marín-Hernández A; Saavedra E FEBS J; 2007 Mar; 274(6):1393-418. PubMed ID: 17302740 [TBL] [Abstract][Full Text] [Related]
10. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Belisario DC; Kopecka J; Pasino M; Akman M; De Smaele E; Donadelli M; Riganti C Cells; 2020 Dec; 9(12):. PubMed ID: 33291643 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial DNA content reduction induces aerobic glycolysis and reversible resistance to drug-induced apoptosis in SW480 colorectal cancer cells. Mou JJ; Peng J; Shi YY; Li N; Wang Y; Ke Y; Zhou YF; Zhou FX Biomed Pharmacother; 2018 Jul; 103():729-737. PubMed ID: 29684851 [TBL] [Abstract][Full Text] [Related]
12. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Du B; Shim JS Molecules; 2016 Jul; 21(7):. PubMed ID: 27455225 [TBL] [Abstract][Full Text] [Related]
13. The emerging role of targeting cancer metabolism for cancer therapy. Farhadi P; Yarani R; Dokaneheifard S; Mansouri K Tumour Biol; 2020 Oct; 42(10):1010428320965284. PubMed ID: 33028168 [TBL] [Abstract][Full Text] [Related]
14. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Ai Z; Lu Y; Qiu S; Fan Z Cancer Lett; 2016 Apr; 373(1):36-44. PubMed ID: 26801746 [TBL] [Abstract][Full Text] [Related]
15. Suppression of PGC-1α Drives Metabolic Dysfunction in TGFβ2-Induced EMT of Retinal Pigment Epithelial Cells. Shu DY; Butcher ER; Saint-Geniez M Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946753 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Moreno-Sánchez R; Marín-Hernández Á; Del Mazo-Monsalvo I; Saavedra E; Rodríguez-Enríquez S Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3221-3236. PubMed ID: 27538376 [TBL] [Abstract][Full Text] [Related]
17. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors. Zhang X; de Milito A; Olofsson MH; Gullbo J; D'Arcy P; Linder S Int J Mol Sci; 2015 Nov; 16(11):27313-26. PubMed ID: 26580606 [TBL] [Abstract][Full Text] [Related]
18. Suppression of oxidative phosphorylation confers resistance against bevacizumab in experimental glioma. Eriksson JA; Wanka C; Burger MC; Urban H; Hartel I; von Renesse J; Harter PN; Mittelbronn M; Steinbach JP; Rieger J J Neurochem; 2018 Feb; 144(4):421-430. PubMed ID: 29178334 [TBL] [Abstract][Full Text] [Related]
19. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity. Catalán M; Olmedo I; Faúndez J; Jara JA Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217901 [TBL] [Abstract][Full Text] [Related]
20. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Vaupel P; Schmidberger H; Mayer A Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]