These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33418514)

  • 1. Application of machine learning to improve dairy farm management: A systematic literature review.
    Slob N; Catal C; Kassahun A
    Prev Vet Med; 2021 Feb; 187():105237. PubMed ID: 33418514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of reproductive performance of lactating cows on large dairy farms using machine learning algorithms.
    Caraviello DZ; Weigel KA; Craven M; Gianola D; Cook NB; Nordlund KV; Fricke PM; Wiltbank MC
    J Dairy Sci; 2006 Dec; 89(12):4703-22. PubMed ID: 17106103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of metabolic status of dairy cows in early lactation with on-farm cow data and machine learning algorithms.
    Xu W; van Knegsel ATM; Vervoort JJM; Bruckmaier RM; van Hoeij RJ; Kemp B; Saccenti E
    J Dairy Sci; 2019 Nov; 102(11):10186-10201. PubMed ID: 31477295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms.
    Shahinfar S; Page D; Guenther J; Cabrera V; Fricke P; Weigel K
    J Dairy Sci; 2014 Feb; 97(2):731-42. PubMed ID: 24290820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Management of heat stress to improve fertility in dairy cows in Israel.
    Flamenbaum I; Galon N
    J Reprod Dev; 2010 Jan; 56 Suppl():S36-41. PubMed ID: 20629215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying additive logistic regression to data derived from sensors monitoring behavioral and physiological characteristics of dairy cows to detect lameness.
    Kamphuis C; Frank E; Burke JK; Verkerk GA; Jago JG
    J Dairy Sci; 2013; 96(11):7043-7053. PubMed ID: 24011945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of machine learning and logistic regression in modelling the association of body condition score and submission rate.
    Bates AJ; Saldias B
    Prev Vet Med; 2019 Nov; 171():104765. PubMed ID: 31499454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Over 20 Years of Machine Learning Applications on Dairy Farms: A Comprehensive Mapping Study.
    Shine P; Murphy MD
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short communication: Prediction of retention pay-off using a machine learning algorithm.
    Shahinfar S; Kalantari AS; Cabrera V; Weigel K
    J Dairy Sci; 2014 May; 97(5):2949-52. PubMed ID: 24582444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prognostic model to predict the success of artificial insemination in dairy cows based on readily available data.
    Rutten CJ; Steeneveld W; Vernooij JCM; Huijps K; Nielen M; Hogeveen H
    J Dairy Sci; 2016 Aug; 99(8):6764-6779. PubMed ID: 27236752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring labor input on pasture-based dairy farms using a smartphone.
    Deming J; Gleeson D; O'Dwyer T; Kinsella J; O'Brien B
    J Dairy Sci; 2018 Oct; 101(10):9527-9543. PubMed ID: 30031585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economic and environmental feasibility of a perennial cow dairy farm.
    Rotz CA; Zartman DL; Crandall KL
    J Dairy Sci; 2005 Aug; 88(8):3009-19. PubMed ID: 16027215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning models for predicting the use of different animal breeding services in smallholder dairy farms in Sub-Saharan Africa.
    Mwanga G; Lockwood S; Mujibi DFN; Yonah Z; Chagunda MGG
    Trop Anim Health Prod; 2020 May; 52(3):1081-1091. PubMed ID: 31732835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of three methods to assess the degree of milk-out in dairy cows.
    Meyer D; Haeussermann A; Barth K; Lingner S; Hartung E
    Animal; 2020 Jan; 14(1):190-197. PubMed ID: 31354116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of goat milk flow emission variables with milking routine, milking parameters, milking machine characteristics and goat physiology.
    Romero G; Panzalis R; Ruegg P
    Animal; 2017 Nov; 11(11):2070-2075. PubMed ID: 28393747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic, farm, and lactation effects on behavior and performance of US Holsteins in automated milking systems.
    Dechow CD; Sondericker KS; Enab AA; Hardie LC
    J Dairy Sci; 2020 Dec; 103(12):11503-11514. PubMed ID: 32981722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stochastic dynamic model of a dairy farm to evaluate the technical and economic performance under different scenarios.
    Calsamiglia S; Astiz S; Baucells J; Castillejos L
    J Dairy Sci; 2018 Aug; 101(8):7517-7530. PubMed ID: 29803414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk factors associated with on-farm mortality in Swedish dairy cows.
    Alvåsen K; Jansson Mörk M; Dohoo IR; Sandgren CH; Thomsen PT; Emanuelson U
    Prev Vet Med; 2014 Nov; 117(1):110-20. PubMed ID: 25192868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality based on Cow Data and Daily Environmental Parameters.
    Fuentes S; Gonzalez Viejo C; Cullen B; Tongson E; Chauhan SS; Dunshea FR
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-farm mortality and related risk factors in Estonian dairy cows.
    Reimus K; Orro T; Emanuelson U; Viltrop A; Mõtus K
    Prev Vet Med; 2018 Jul; 155():53-60. PubMed ID: 29786525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.