BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33418550)

  • 1. Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed.
    Jasuja H; Kar S; Katti DR; Katti KS
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33418550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of Fluid Shear Stress on Bone and Cancer Cells Proliferation and Distribution.
    Akerkouch L; Jasuja H; Katti K; Katti D; Le T
    Ann Biomed Eng; 2023 Jun; 51(6):1199-1215. PubMed ID: 36593306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of perfused combinatorial 3D microenvironments for cell culture.
    Lopes D; Fernandes C; Nóbrega JM; Patrício SG; Oliveira MB; Mano JF
    Acta Biomater; 2019 Sep; 96():222-236. PubMed ID: 31255663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds.
    Zhao F; Grayson WL; Ma T; Irsigler A
    J Cell Physiol; 2009 May; 219(2):421-9. PubMed ID: 19170078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial fluid flow contributes to prostate cancer invasion and migration to bone; study conducted using a novel horizontal flow bioreactor.
    Jasuja H; Jaswandkar SV; Katti DR; Katti KS
    Biofabrication; 2023 Mar; 15(2):. PubMed ID: 36863017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mesenchymal stem cell position within scaffolds influences cell fate during dynamic culture.
    Yeatts AB; Geibel EM; Fears FF; Fisher JP
    Biotechnol Bioeng; 2012 Sep; 109(9):2381-91. PubMed ID: 22422570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells.
    Yeatts AB; Fisher JP
    Tissue Eng Part C Methods; 2011 Mar; 17(3):337-48. PubMed ID: 20929287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel bidirectional continuous perfusion bioreactor for the culture of large-sized bone tissue-engineered constructs.
    Gardel LS; Correia-Gomes C; Serra LA; Gomes ME; Reis RL
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1377-86. PubMed ID: 23681695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor.
    Li D; Tang T; Lu J; Dai K
    Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of MSCs to 3D Scaffold Matrix Mechanical Properties under Oscillatory Perfusion Culture.
    Chen G; Xu R; Zhang C; Lv Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1207-1218. PubMed ID: 28006094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulated explant in novel low shear perfusion bioreactor improve cell isolation, expansion and colony forming unit.
    Gharravi AM
    Cell Tissue Bank; 2019 Mar; 20(1):25-34. PubMed ID: 30673903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a Parallelizable Perfusion Bioreactor for Physiologic 3D Cell Culture.
    Egger D; Spitz S; Fischer M; Handschuh S; Glösmann M; Friemert B; Egerbacher M; Kasper C
    Cells Tissues Organs; 2017; 203(5):316-326. PubMed ID: 28291964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor.
    Alves da Silva ML; Martins A; Costa-Pinto AR; Correlo VM; Sol P; Bhattacharya M; Faria S; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2011 Oct; 5(9):722-32. PubMed ID: 21953870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis.
    Nokhbatolfoghahaei H; Bohlouli M; Paknejad Z; R Rad M; M Amirabad L; Salehi-Nik N; Khani MM; Shahriari S; Nadjmi N; Ebrahimpour A; Khojasteh A
    J Biomed Mater Res A; 2020 Aug; 108(8):1662-1672. PubMed ID: 32191385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.
    Fitzgerald KA; Guo J; Tierney EG; Curtin CM; Malhotra M; Darcy R; O'Brien FJ; O'Driscoll CM
    Biomaterials; 2015 Oct; 66():53-66. PubMed ID: 26196533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pulse frequency on the osteogenic differentiation of mesenchymal stem cells in a pulsatile perfusion bioreactor.
    Kavlock KD; Goldstein AS
    J Biomech Eng; 2011 Sep; 133(9):091005. PubMed ID: 22010740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation.
    Sonnaert M; Papantoniou I; Bloemen V; Kerckhofs G; Luyten FP; Schrooten J
    J Tissue Eng Regen Med; 2017 Feb; 11(2):519-530. PubMed ID: 25186024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation.
    Seddiqi H; Saatchi A; Amoabediny G; Helder MN; Abbasi Ravasjani S; Safari Hajat Aghaei M; Jin J; Zandieh-Doulabi B; Klein-Nulend J
    Comput Biol Med; 2020 Sep; 124():103826. PubMed ID: 32798924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair.
    De Luca A; Vitrano I; Costa V; Raimondi L; Carina V; Bellavia D; Conoscenti G; Di Falco R; Pavia FC; La Carrubba V; Brucato V; Giavaresi G
    J Biosci Bioeng; 2020 Feb; 129(2):250-257. PubMed ID: 31506241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.