These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33418552)

  • 41. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study.
    Wan Z; Liu T; Ran X; Liu P; Chen W; Zhang S
    Front Comput Neurosci; 2023; 17():1135783. PubMed ID: 37251598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface.
    Forenzo D; Zhu H; Shanahan J; Lim J; He B
    bioRxiv; 2024 Apr; ():. PubMed ID: 37905046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Speech decoding from stereo-electroencephalography (sEEG) signals using advanced deep learning methods.
    Wu X; Wellington S; Fu Z; Zhang D
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885688
    [No Abstract]   [Full Text] [Related]  

  • 45. Thinker invariance: enabling deep neural networks for BCI across more people.
    Kostas D; Rudzicz F
    J Neural Eng; 2020 Oct; 17(5):056008. PubMed ID: 32916675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding.
    Li Y; Zhang XR; Zhang B; Lei MY; Cui WG; Guo YZ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1170-1180. PubMed ID: 31071048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural Decoding Forelimb Trajectory Using Evolutionary Neural Networks with Feedback-Error-Learning Schemes.
    Lin YC; Chou C; Yang SH; Lai HY; Lo YC; Chen YY
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2539-2542. PubMed ID: 30440925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance.
    ƚliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    Front Hum Neurosci; 2023; 17():1111645. PubMed ID: 37007675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Brain control of bimanual movement enabled by recurrent neural networks.
    Deo DR; Willett FR; Avansino DT; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2024 Jan; 14(1):1598. PubMed ID: 38238386
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finger movements are mainly represented by a linear transformation of energy in band-specific ECoG signals.
    Marjaninejad A; Taherian B; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():986-989. PubMed ID: 29060039
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decoding study-independent mind-wandering from EEG using convolutional neural networks.
    Jin CY; Borst JP; van Vugt MK
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36944239
    [No Abstract]   [Full Text] [Related]  

  • 58. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subject-Agnostic Transformer-Based Neural Speech Decoding from Surface and Depth Electrode Signals.
    Chen J; Chen X; Wang R; Le C; Khalilian-Gourtani A; Jensen E; Dugan P; Doyle W; Devinsky O; Friedman D; Flinker A; Wang Y
    bioRxiv; 2024 Sep; ():. PubMed ID: 38559163
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Learning Movement Intent Decoders Trained With Dataset Aggregation for Prosthetic Limb Control.
    Dantas H; Warren DJ; Wendelken SM; Davis TS; Clark GA; Mathews VJ
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3192-3203. PubMed ID: 30835207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.