These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33418554)

  • 1. A passive BCI for monitoring the intentionality of the gaze-based moving object selection.
    Zhao DG; Vasilyev AN; Kozyrskiy BL; Melnichuk EV; Isachenko AV; Velichkovsky BM; Shishkin SL
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33418554
    [No Abstract]   [Full Text] [Related]  

  • 2. EEG Negativity in Fixations Used for Gaze-Based Control: Toward Converting Intentions into Actions with an Eye-Brain-Computer Interface.
    Shishkin SL; Nuzhdin YO; Svirin EP; Trofimov AG; Fedorova AA; Kozyrskiy BL; Velichkovsky BM
    Front Neurosci; 2016; 10():528. PubMed ID: 27917105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of smooth pursuit-related neurons in the monkey periarcuate cortex during pursuit and passive whole-body rotation.
    Fukushima K; Sato T; Fukushima J; Shinmei Y; Kaneko CR
    J Neurophysiol; 2000 Jan; 83(1):563-87. PubMed ID: 10634896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
    Shinmei Y; Yamanobe T; Fukushima J; Fukushima K
    J Neurophysiol; 2002 Apr; 87(4):1836-49. PubMed ID: 11929905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration-Free Gaze Interfaces Based on Linear Smooth Pursuit.
    Zhe Z; Siebert FW; Venjakob AC; Roetting M
    J Eye Mov Res; 2020 Mar; 13(1):. PubMed ID: 33828782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MEG-Based Detection of Voluntary Eye Fixations Used to Control a Computer.
    Ovchinnikova AO; Vasilyev AN; Zubarev IP; Kozyrskiy BL; Shishkin SL
    Front Neurosci; 2021; 15():619591. PubMed ID: 33613182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards increasing the number of commands in a hybrid brain-computer interface with combination of gaze and motor imagery.
    Meena YK; Cecotti H; KongFatt Wong-Lin ; Prasad G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():506-9. PubMed ID: 26736310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive classification in a self-paced hybrid brain-computer interface system.
    Yong X; Fatourechi M; Ward RK; Birch GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3274-9. PubMed ID: 23366625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asynchronous gaze-independent event-related potential-based brain-computer interface.
    Aloise F; Aricò P; Schettini F; Salinari S; Mattia D; Cincotti F
    Artif Intell Med; 2013 Oct; 59(2):61-9. PubMed ID: 24080078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-computer interface method combined with eye tracking for 3D interaction.
    Lee EC; Woo JC; Kim JH; Whang M; Park KR
    J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closed-loop EEG study on visual recognition during driving.
    Aydarkhanov R; Ušćumlić M; Chavarriaga R; Gheorghe L; Del R Millán J
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33494072
    [No Abstract]   [Full Text] [Related]  

  • 13. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
    Roy JE; Cullen KE
    J Neurophysiol; 2003 Jul; 90(1):271-90. PubMed ID: 12843311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities.
    Kothari R; Yang Z; Kanan C; Bailey R; Pelz JB; Diaz GJ
    Sci Rep; 2020 Feb; 10(1):2539. PubMed ID: 32054884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A P300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design.
    Ganin IP; Shishkin SL; Kaplan AY
    PLoS One; 2013; 8(10):e77755. PubMed ID: 24302977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the vestibulo-ocular reflex by prior eye movements.
    Das VE; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1999 Jun; 81(6):2884-92. PubMed ID: 10368405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive responses of periarcuate pursuit neurons to visual target motion.
    Fukushima K; Yamanobe T; Shinmei Y; Fukushima J
    Exp Brain Res; 2002 Jul; 145(1):104-20. PubMed ID: 12070750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze pursuit, 'attention pursuit' and their effects on cortical activations.
    Ohlendorf S; Kimmig H; Glauche V; Haller S
    Eur J Neurosci; 2007 Oct; 26(7):2096-108. PubMed ID: 17897405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1614-26. PubMed ID: 10980031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.