These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33418644)

  • 1. Three Dimensional and Homogenous Single Cell Cyclic Stretch within a Magnetic Micropillar Array (mMPA) for a Cell Proliferation Study.
    Gao Y; Zhou B; Wu X; Gao X; Zeng X; Xie J; Wang C; Ye Z; Wan J; Wen W
    ACS Biomater Sci Eng; 2016 Jan; 2(1):65-72. PubMed ID: 33418644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of static ultramicromagnetic field with elastic micropillar-structured substrate for cell response.
    Quan Y; Huang Z; Wang Y; Liu Y; Ding S; Zhao Q; Chen X; Li H; Tang Z; Zhou B; Zhou Y
    Mater Today Bio; 2023 Dec; 23():100831. PubMed ID: 37881448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Demand Dynamic Chirality Selection in Flower Corolla-like Micropillar Arrays.
    Park JE; Jeon J; Park SJ; Won S; Ku Z; Wie JJ
    ACS Nano; 2022 Nov; 16(11):18101-18109. PubMed ID: 36282603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct application of mechanical stimulation to cell adhesion sites using a novel magnetic-driven micropillar substrate.
    Nagayama K; Inoue T; Hamada Y; Sugita S; Matsumoto T
    Biomed Microdevices; 2018 Sep; 20(4):85. PubMed ID: 30259169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Magneto-Mechanical Actuation of Micropillar Arrays by Anisotropic Stress Distribution.
    Park JE; Jeon J; Park SJ; Won S; Ku Z; Wie JJ
    Small; 2020 Sep; 16(38):e2003179. PubMed ID: 32794323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses.
    Nagayama K; Inoue T; Hamada Y; Matsumoto T
    J Biomech; 2017 Dec; 65():194-202. PubMed ID: 29126605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate.
    Nagayama K; Adachi A; Matsumoto T
    J Biomech; 2011 Oct; 44(15):2699-705. PubMed ID: 21864841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Collective- and Single-Cell Behaviors on Silicon Micropillar Arrays.
    Jahed Z; Zareian R; Chau YY; Seo BB; West M; Tsui TY; Wen W; Mofrad MR
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23604-13. PubMed ID: 27536959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-Shell Magnetic Micropillars for Reprogrammable Actuation.
    Ni K; Peng Q; Gao E; Wang K; Shao Q; Huang H; Xue L; Wang Z
    ACS Nano; 2021 Mar; 15(3):4747-4758. PubMed ID: 33617237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of liquid lithography to form
    Logan Howard R; Wang Y; Allbritton NL
    J Micromech Microeng; 2021 Dec; 31(12):. PubMed ID: 35241878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdevice arrays of high aspect ratio poly(dimethylsiloxane) pillars for the investigation of multicellular tumour spheroid mechanical properties.
    Aoun L; Weiss P; Laborde A; Ducommun B; Lobjois V; Vieu C
    Lab Chip; 2014 Jul; 14(13):2344-53. PubMed ID: 24836927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A digital microfluidic platform based on a near-infrared light-responsive shape-memory micropillar array.
    Ye WQ; Wei YY; Wang DN; Yang CG; Xu ZR
    Lab Chip; 2021 Mar; 21(6):1131-1138. PubMed ID: 33533387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Stiffness and the Elastic Modulus of 3D-Printed Micropillars with Atomic Force Microscopy-Force Spectroscopy.
    Cortelli G; Grob L; Patruno L; Cramer T; Mayer D; Fraboni B; Wolfrum B; de Miranda S
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7602-7609. PubMed ID: 36706051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Color-Switching of Hydrogel Micropillar Array under Ethanol Vapor for Optical Encryption.
    Zhou MX; Jin F; Wang JY; Dong XZ; Liu J; Zheng ML
    Small; 2023 Nov; 19(47):e2304384. PubMed ID: 37480176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetically actuated microstructured surfaces can actively modify cell migration behaviour.
    Khademolhosseini F; Liu CC; Lim CJ; Chiao M
    Biomed Microdevices; 2016 Feb; 18(1):13. PubMed ID: 26825323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and analysis of nature-inspired branched micropillars for enhanced dynamic bio-sensing.
    Mustapha KB; Hawwa MA; Abakr YA
    Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3531. PubMed ID: 34536263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdroplet-based On-Demand Drawing of High Aspect-Ratio Elastomeric Micropillar and Its Contact Sensing Application.
    Li Q; Dhakal R; Kim J
    Sci Rep; 2017 Dec; 7(1):17009. PubMed ID: 29209022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoelectric focusing in an ordered micropillar array.
    Dauriac V; Descroix S; Chen Y; Peltre G; Sénéchal H
    Electrophoresis; 2008 Jul; 29(14):2945-52. PubMed ID: 18551718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array.
    Liu R; Yao X; Liu X; Ding J
    Langmuir; 2019 Jan; 35(1):284-299. PubMed ID: 30513205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.