These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 33418668)

  • 1. Novel Microfluidic Colon with an Extracellular Matrix Membrane.
    Wang C; Tanataweethum N; Karnik S; Bhushan A
    ACS Biomater Sci Eng; 2018 Apr; 4(4):1377-1385. PubMed ID: 33418668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips.
    Pensabene V; Costa L; Terekhov AY; Gnecco JS; Wikswo JP; Hofmeister WH
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22629-36. PubMed ID: 27513606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption.
    Sano E; Mori C; Matsuoka N; Ozaki Y; Yagi K; Wada A; Tashima K; Yamasaki S; Tanabe K; Yano K; Torisawa YS
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen I Based Enzymatically Degradable Membranes for Organ-on-a-Chip Barrier Models.
    Arık YB; de Sa Vivas A; Laarveld D; van Laar N; Gemser J; Visscher T; van den Berg A; Passier R; van der Meer AD
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2998-3005. PubMed ID: 33625834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies.
    Tan HY; Trier S; Rahbek UL; Dufva M; Kutter JP; Andresen TL
    PLoS One; 2018; 13(5):e0197101. PubMed ID: 29746551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricating Microstructures on Glass for Microfluidic Chips by Glass Molding Process.
    Wang T; Chen J; Zhou T; Song L
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A miniaturized multicellular platform to mimic the 3D structure of the alveolar-capillary barrier.
    Licciardello M; Traldi C; Cicolini M; Bertana V; Marasso SL; Cocuzza M; Tonda-Turo C; Ciardelli G
    Front Bioeng Biotechnol; 2024; 12():1346660. PubMed ID: 38646009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine.
    Chi M; Yi B; Oh S; Park DJ; Sung JH; Park S
    Biomed Microdevices; 2015; 17(3):9966. PubMed ID: 26002774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perforated microhole-based microfluidic device for improving sprouting angiogenesis
    Chen S; Zhang L; Zhao Y; Ke M; Li B; Chen L; Cai S
    Biomicrofluidics; 2017 Sep; 11(5):054111. PubMed ID: 29085522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems.
    Odijk M; van der Meer AD; Levner D; Kim HJ; van der Helm MW; Segerink LI; Frimat JP; Hamilton GA; Ingber DE; van den Berg A
    Lab Chip; 2015 Feb; 15(3):745-52. PubMed ID: 25427650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical fabrication of microfluidic platforms for live-cell microscopy.
    Lorusso D; Nikolov HN; Milner JS; Ochotny NM; Sims SM; Dixon SJ; Holdsworth DW
    Biomed Microdevices; 2016 Oct; 18(5):78. PubMed ID: 27523472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and monolayer culture of guinea pig pancreatic duct epithelial cells.
    Hootman SR; Logsdon CD
    In Vitro Cell Dev Biol; 1988 Jun; 24(6):566-74. PubMed ID: 2839463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.
    van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL
    Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barriers-on-chips: Measurement of barrier function of tissues in organs-on-chips.
    Arık YB; van der Helm MW; Odijk M; Segerink LI; Passier R; van den Berg A; van der Meer AD
    Biomicrofluidics; 2018 Jul; 12(4):042218. PubMed ID: 30018697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes.
    Li Z; Tuffin J; Lei IM; Ruggeri FS; Lewis NS; Gill EL; Savin T; Huleihel L; Badylak SF; Knowles T; Satchell SC; Welsh GI; Saleem MA; Huang YYS
    Acta Biomater; 2018 Sep; 78():111-122. PubMed ID: 30099199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.