These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33418669)

  • 1. Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering.
    Wang YJ; Jeng US; Hsu SH
    ACS Biomater Sci Eng; 2018 Apr; 4(4):1397-1406. PubMed ID: 33418669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
    Wen YT; Dai NT; Hsu SH
    Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.
    Hung KC; Tseng CS; Hsu SH
    Adv Healthc Mater; 2014 Oct; 3(10):1578-87. PubMed ID: 24729580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering.
    Tsai MC; Hung KC; Hung SC; Hsu SH
    Colloids Surf B Biointerfaces; 2015 Jan; 125():34-44. PubMed ID: 25460599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4D bioprintable self-healing hydrogel with shape memory and cryopreserving properties.
    Wu SD; Hsu SH
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34530408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds.
    Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M
    Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting.
    Hsieh CT; Hsu SH
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.
    Cheng KW; Hsu SH
    Int J Nanomedicine; 2017; 12():1775-1789. PubMed ID: 28280341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting.
    Hsiao SH; Hsu SH
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of novel water-based biodegradable polyurethane nanoparticles encapsulating superparamagnetic iron oxide and hydrophobic drugs.
    Chen YP; Hsu SH
    J Mater Chem B; 2014 Jun; 2(21):3391-3401. PubMed ID: 32261601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane-gelatin methacryloyl hybrid ink for 3D printing of biocompatible and tough vascular networks.
    Huang Y; Zhao H; Wang X; Liu X; Gao Z; Bai H; Lv F; Gu Q; Wang S
    Chem Commun (Camb); 2022 Jun; 58(49):6894-6897. PubMed ID: 35638877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications.
    Chen RD; Huang CF; Hsu SH
    Carbohydr Polym; 2019 May; 212():75-88. PubMed ID: 30832883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tripolyphosphate-Crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds.
    Fischetti T; Celikkin N; Contessi Negrini N; Farè S; Swieszkowski W
    Front Bioeng Biotechnol; 2020; 8():400. PubMed ID: 32426350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethane and polyurethane/hydroxyapatite scaffold in a three-dimensional culture system.
    Ghasroldasht MM; Mastrogiacomo M; Akbarian F; Rezaeian A
    Cell Biol Int; 2022 Dec; 46(12):2041-2049. PubMed ID: 35971683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds.
    Shahrousvand M; Ghollasi M; Zarchi AAK; Salimi A
    Int J Biol Macromol; 2019 Oct; 138():262-271. PubMed ID: 31302125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly elastic and self-healing nanostructured gelatin/clay colloidal gels with osteogenic capacity for minimally invasive and customized bone regeneration.
    Dou Z; Tang H; Chen K; Li D; Ying Q; Mu Z; An C; Shao F; Zhang Y; Zhang Y; Bai H; Zheng G; Zhang L; Chen T; Wang H
    Biofabrication; 2023 Jan; 15(2):. PubMed ID: 36595285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.