These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 33418757)
1. Novel Fabricating Process for Porous Polyglycolic Acid Scaffolds by Melt-Foaming Using Supercritical Carbon Dioxide. Zhang J; Yang S; Yang X; Xi Z; Zhao L; Cen L; Lu E; Yang Y ACS Biomater Sci Eng; 2018 Feb; 4(2):694-706. PubMed ID: 33418757 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of PCL Scaffolds by Supercritical CO Song C; Luo Y; Liu Y; Li S; Xi Z; Zhao L; Cen L; Lu E Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32252222 [TBL] [Abstract][Full Text] [Related]
3. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance. Rouholamin D; van Grunsven W; Reilly GC; Smith PJ Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685 [TBL] [Abstract][Full Text] [Related]
5. Tuning the three-dimensional architecture of supercritical CO Salerno A; Leonardi AB; Pedram P; Di Maio E; Fanovich MA; Netti PA Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110518. PubMed ID: 32228998 [TBL] [Abstract][Full Text] [Related]
6. Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Gualandi C; White LJ; Chen L; Gross RA; Shakesheff KM; Howdle SM; Scandola M Acta Biomater; 2010 Jan; 6(1):130-6. PubMed ID: 19619678 [TBL] [Abstract][Full Text] [Related]
7. Porous poly(D,L-lactic acid) foams with tunable structure and mechanical anisotropy prepared by supercritical carbon dioxide. Floren M; Spilimbergo S; Motta A; Migliaresi C J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):338-49. PubMed ID: 21953772 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623 [TBL] [Abstract][Full Text] [Related]
9. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663 [TBL] [Abstract][Full Text] [Related]
10. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505 [TBL] [Abstract][Full Text] [Related]
11. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
12. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal. Salerno A; Saurina J; Domingo C Int J Pharm; 2015 Dec; 496(2):654-63. PubMed ID: 26570986 [TBL] [Abstract][Full Text] [Related]
13. Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Aguado M; Saldaña L; Pérez Del Río E; Guasch J; Parera M; Córdoba A; Seras-Franzoso J; Cano-Garrido O; Vázquez E; Villaverde A; Veciana J; Ratera I; Vilaboa N; Ventosa N Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685212 [TBL] [Abstract][Full Text] [Related]
14. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering. Jonnalagadda JB; Rivero IV J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523 [TBL] [Abstract][Full Text] [Related]
15. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
16. Development of Porous Polyvinyl Acetate/Polypyrrole/Gallic Acid Scaffolds Using Supercritical CO Valor D; Montes A; Cózar A; Pereyra C; Martínez de la Ossa E Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215583 [TBL] [Abstract][Full Text] [Related]
17. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation. Li D; Zhang S; Zhao Z; Miao Z; Zhang G; Shi X Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177130 [TBL] [Abstract][Full Text] [Related]
18. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating. Salerno A; Iannace S; Netti PA Macromol Biosci; 2008 Jul; 8(7):655-64. PubMed ID: 18350540 [TBL] [Abstract][Full Text] [Related]
19. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. Sheng SJ; Hu X; Wang F; Ma QY; Gu MF Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990 [TBL] [Abstract][Full Text] [Related]