These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33418759)

  • 1. Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing.
    Wang G; Shen L; Zhao J; Liang H; Xie D; Tian Z; Wang C
    ACS Biomater Sci Eng; 2018 Feb; 4(2):719-727. PubMed ID: 33418759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Mechanical Properties Verification of Gradient Voronoi Scaffold for Bone Tissue Engineering.
    Zhao H; Han Y; Pan C; Yang D; Wang H; Wang T; Zeng X; Su P
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34198927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Compressive Fatigue Properties of Irregular Porous Scaffolds for Orthopedics Fabricated Using Selective Laser Melting.
    Zhu L; Liang H; Lv F; Xie D; Wang C; Mao Y; Yang Y; Tian Z; Shen L
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1663-1672. PubMed ID: 33682413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and mechanical properties analysis of heterogeneous porous scaffolds based on bone slice images.
    Wang X; Chen J; Dong X; Guan Y; Kang Y
    Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3673. PubMed ID: 36537649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and permeability properties of porous scaffolds developed by a Voronoi tessellation for bone tissue engineering.
    Zhao Z; Li J; Yao D; Wei Y
    J Mater Chem B; 2022 Nov; 10(46):9699-9712. PubMed ID: 36398681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additively Manufactured Multilevel Voronoi-Lattice Scaffolds with Bonelike Mechanical Properties.
    Zou S; Gong H; Gao J
    ACS Biomater Sci Eng; 2022 Jul; 8(7):3022-3037. PubMed ID: 35537212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal mechanical properties of Hydroxyapatite gradient Voronoi porous scaffolds for bone applications - A numerical study.
    Rezapourian M; Hussainova I
    J Mech Behav Biomed Mater; 2023 Dec; 148():106232. PubMed ID: 37952505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and properties of biomimetic irregular scaffolds for bone tissue engineering.
    Chen H; Liu Y; Wang C; Zhang A; Chen B; Han Q; Wang J
    Comput Biol Med; 2021 Mar; 130():104241. PubMed ID: 33529844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Mechanical Properties and Permeability of Trabecular-Like Porous Scaffold by Additive Manufacturing.
    Chao L; Jiao C; Liang H; Xie D; Shen L; Liu Z
    Front Bioeng Biotechnol; 2021; 9():779854. PubMed ID: 34993188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mechanical characteristics and permeability of TPMS and Voronoi porous structure for bone scaffold.
    Mamuti M; Chao L; Tian Z
    Comput Methods Biomech Biomed Engin; 2024 May; ():1-14. PubMed ID: 38812356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials.
    Zhang XY; Fang G; Leeflang S; Zadpoor AA; Zhou J
    Acta Biomater; 2019 Jan; 84():437-452. PubMed ID: 30537537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review.
    Chen H; Han Q; Wang C; Liu Y; Chen B; Wang J
    Front Bioeng Biotechnol; 2020; 8():609. PubMed ID: 32626698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and mechanical properties analysis of porous structure for bone tissue engineering.
    Cui J; Yi Y; Zhang J; Chai L; Jin H
    Biomed Mater Eng; 2022; 33(6):465-476. PubMed ID: 35662101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.
    Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Voronoi tessellation as a method to design anisotropic and biomimetic implants.
    Deering J; Dowling KI; DiCecco LA; McLean GD; Yu B; Grandfield K
    J Mech Behav Biomed Mater; 2021 Apr; 116():104361. PubMed ID: 33550142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic Lattice Fabricated by Laser-Based Additive Manufacturing.
    Gao H; Yang J; Jin X; Zhang D; Zhang S; Zhang F; Chen H
    3D Print Addit Manuf; 2023 Oct; 10(5):887-904. PubMed ID: 37886405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of the mechanical properties of controllable porous scaffolds for bone tissue engineering.
    Wang X; Chen J; Kang Y; Sun L
    Proc Inst Mech Eng H; 2022 May; 236(5):748-760. PubMed ID: 35343289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.