BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33418760)

  • 1. Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration.
    Yeo M; Kim G
    ACS Biomater Sci Eng; 2018 Feb; 4(2):728-738. PubMed ID: 33418760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting.
    Yang GH; Kim W; Kim J; Kim G
    Theranostics; 2021; 11(1):48-63. PubMed ID: 33391460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Myoblast-Laden Collagen Bioink with Fully Aligned Au Nanowires for Muscle-Tissue Regeneration.
    Kim W; Jang CH; Kim GH
    Nano Lett; 2019 Dec; 19(12):8612-8620. PubMed ID: 31661283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation.
    Yeo M; Kim G
    Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.
    Yeo M; Lee H; Kim GH
    Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Myoblast-Laden Collagen Filaments Fabricated Using a Submerged Bioprinting Process to Obtain Efficient Myogenic Activities.
    Kim D; Hwangbo H; Kim G
    Biomacromolecules; 2021 Dec; 22(12):5042-5051. PubMed ID: 34783537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropically Aligned Cell-Laden Nanofibrous Bundle Fabricated via Cell Electrospinning to Regenerate Skeletal Muscle Tissue.
    Yeo M; Kim GH
    Small; 2018 Nov; 14(48):e1803491. PubMed ID: 30311453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues.
    Kim W; Lee H; Lee J; Atala A; Yoo JJ; Lee SJ; Kim GH
    Biomaterials; 2020 Feb; 230():119632. PubMed ID: 31761486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Myogenic Activities Achieved through Blade-Casting-Assisted Bioprinting of Aligned Myoblasts Laden in Collagen Bioink.
    Lee S; Kim W; Kim G
    Biomacromolecules; 2023 Nov; 24(11):5219-5229. PubMed ID: 37917832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process.
    Kim YB; Lee H; Kim GH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32230-32240. PubMed ID: 27933843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds.
    Qing H; Ji Y; Li W; Zhao G; Yang Q; Zhang X; Luo Z; Lu TJ; Jin G; Xu F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2049-2058. PubMed ID: 31799832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation.
    Yeo M; Kim G
    Carbohydr Polym; 2019 Nov; 223():115041. PubMed ID: 31427026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration.
    Kim W; Kim G
    Biofabrication; 2019 Nov; 12(1):015007. PubMed ID: 31509811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.
    Kim M; Kim W; Kim G
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43459-43469. PubMed ID: 29171953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.