BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33418890)

  • 1. Discovery and Validation of a Novel Step Catalyzed by
    Jan R; Asaf S; Paudel S; Lubna ; Lee S; Kim KM
    Biology (Basel); 2021 Jan; 10(1):. PubMed ID: 33418890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavanone 3beta-hydroxylases from rice: key enzymes for favonol and anthocyanin biosynthesis.
    Kim JH; Lee YJ; Kim BG; Lim Y; Ahn JH
    Mol Cells; 2008 Apr; 25(2):312-6. PubMed ID: 18413994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation.
    Tu Y; Liu F; Guo D; Fan L; Zhu Z; Xue Y; Gao Y; Guo M
    BMC Plant Biol; 2016 Jun; 16(1):132. PubMed ID: 27286810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing yeast for high-level production of kaempferol and quercetin.
    Tartik M; Liu J; Mohedano MT; Mao J; Chen Y
    Microb Cell Fact; 2023 Apr; 22(1):74. PubMed ID: 37076829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Engineering of a flavonoid 3'-hydroxylase from tea plant (Camellia sinensis) for biosynthesis of B-3',4'-dihydroxylated flavones].
    Zhou T; Yu Y; Xiao B; Bao L; Gao Y
    Wei Sheng Wu Xue Bao; 2017 Mar; 57(3):447-58. PubMed ID: 29756698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa).
    Dai Z; Tan J; Zhou C; Yang X; Yang F; Zhang S; Sun S; Miao X; Shi Z
    Plant Biotechnol J; 2019 Aug; 17(8):1657-1669. PubMed ID: 30734457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae.
    Trantas E; Panopoulos N; Ververidis F
    Metab Eng; 2009 Nov; 11(6):355-66. PubMed ID: 19631278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of yeast for fermentative production of flavonoids.
    Rodriguez A; Strucko T; Stahlhut SG; Kristensen M; Svenssen DK; Forster J; Nielsen J; Borodina I
    Bioresour Technol; 2017 Dec; 245(Pt B):1645-1654. PubMed ID: 28634125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation.
    Galati G; Moridani MY; Chan TS; O'Brien PJ
    Free Radic Biol Med; 2001 Feb; 30(4):370-82. PubMed ID: 11182292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol.
    Lyu X; Zhao G; Ng KR; Mark R; Chen WN
    J Agric Food Chem; 2019 May; 67(19):5596-5606. PubMed ID: 30957490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary investigation of naringenin hydroxylation with recombinant E. coli expressing plant flavonoid hydroxylation gene.
    Amor IL; Salem N; Guedon E; Engasser JM; Chekir-Ghedrira L; Ghoul M
    Nat Prod Commun; 2010 May; 5(5):777-82. PubMed ID: 20521546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Biosynthesis of (2
    Gao S; Lyu Y; Zeng W; Du G; Zhou J; Chen J
    J Agric Food Chem; 2020 Jan; 68(4):1015-1021. PubMed ID: 31690080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Phenylpropanoid and Trichothecene Production by Fusarium culmorum and F. graminearum Sensu Stricto via Exposure to Flavonoids.
    Bilska K; Stuper-Szablewska K; Kulik T; Buśko M; Załuski D; Jurczak S; Perkowski J
    Toxins (Basel); 2018 Mar; 10(3):. PubMed ID: 29510600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling.
    Pillai BV; Swarup S
    Appl Environ Microbiol; 2002 Jan; 68(1):143-51. PubMed ID: 11772620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and Biochemical Analysis of Two Rice Flavonoid 3'-Hydroxylase to Evaluate Their Roles in Flavonoid Biosynthesis in Rice Grain.
    Park S; Choi MJ; Lee JY; Kim JK; Ha SH; Lim SH
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3-hydroxylase with 2-hydroxylase side activity.
    Marín L; Gutiérrez-Del-Río I; Villar CJ; Lombó F
    Microb Biotechnol; 2021 Sep; 14(5):2009-2024. PubMed ID: 34216097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast.
    Ohashi T; Hasegawa Y; Misaki R; Fujiyama K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):687-96. PubMed ID: 26433966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte
    Wu M; Gong DC; Yang Q; Zhang MQ; Mei YZ; Dai CC
    ACS Synth Biol; 2021 Aug; 10(8):2030-2039. PubMed ID: 34251173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of flavonols in response to ultraviolet-B irradiation in soybean is related to induction of flavanone 3-beta-hydroxylase and flavonol synthase.
    Kim BG; Kim JH; Kim J; Lee C; Ahn JH
    Mol Cells; 2008 Apr; 25(2):247-52. PubMed ID: 18414005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in Escherichia coli.
    Pei J; Chen A; Dong P; Shi X; Zhao L; Cao F; Tang F
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):171-186. PubMed ID: 30617726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.