These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 33418987)

  • 21. Convolutional Neural Network-Based Lane-Change Strategy via Motion Image Representation for Automated and Connected Vehicles.
    Cheng S; Wang Z; Yang B; Nakano K
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; PP():. PubMed ID: 37071514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of safety measures on driver's speed behavior at pedestrian crossings.
    Bella F; Silvestri M
    Accid Anal Prev; 2015 Oct; 83():111-24. PubMed ID: 26253423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Neuro-Vision Embedded Architecture for Safety Assessment in Perceptive Advanced Driver Assistance Systems: The Pedestrian Tracking System Use-Case.
    Rundo F; Conoci S; Spampinato C; Leotta R; Trenta F; Battiato S
    Front Neuroinform; 2021; 15():667008. PubMed ID: 34393746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analyzing the Influencing Factors and Workload Variation of Takeover Behavior in Semi-Autonomous Vehicles.
    Zhang H; Zhang Y; Xiao Y; Wu C
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Efficient Motion Planning Method for Automated Vehicles Considering Dynamic Obstacle Avoidance and Traffic Interaction.
    Zhang Y; Wang J; Lv J; Gao B; Chu H; Na X
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Portable System for Monitoring and Controlling Driver Behavior and the Use of a Mobile Phone While Driving.
    Khandakar A; Chowdhury MEH; Ahmed R; Dhib A; Mohammed M; Al-Emadi NAMA; Michelson D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Game Theory-Based Approach for Modeling Autonomous Vehicle Behavior in Congested, Urban Lane-Changing Scenarios.
    Smirnov N; Liu Y; Validi A; Morales-Alvarez W; Olaverri-Monreal C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human-like Decision-Making System for Overtaking Stationary Vehicles Based on Traffic Scene Interpretation.
    Yang J; Lee S; Lim W; Sunwoo M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggressive driving behavior prediction considering driver's intention based on multivariate-temporal feature data.
    Xu W; Wang J; Fu T; Gong H; Sobhani A
    Accid Anal Prev; 2022 Jan; 164():106477. PubMed ID: 34813934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Repeated Game Freeway Lane Changing Model.
    Kang K; Rakha HA
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shaping driver-vehicle interaction in autonomous vehicles: How the new in-vehicle systems match the human needs.
    Sun X; Cao S; Tang P
    Appl Ergon; 2021 Jan; 90():103238. PubMed ID: 33010571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactive Lane Keeping System for Autonomous Vehicles Using LSTM-RNN Considering Driving Environments.
    Jeong Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multimodal driver state modeling through unsupervised learning.
    Tavakoli A; Heydarian A
    Accid Anal Prev; 2022 Jun; 170():106640. PubMed ID: 35339879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graph Reinforcement Learning-Based Decision-Making Technology for Connected and Autonomous Vehicles: Framework, Review, and Future Trends.
    Liu Q; Li X; Tang Y; Gao X; Yang F; Li Z
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research on a Cognitive Distraction Recognition Model for Intelligent Driving Systems Based on Real Vehicle Experiments.
    Sun Q; Wang C; Guo Y; Yuan W; Fu R
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Driver Behavior Profiling and Recognition Using Deep-Learning Methods: In Accordance with Traffic Regulations and Experts Guidelines.
    Al-Hussein WA; Por LY; Kiah MLM; Zaidan BB
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human-Machine Shared Driving Control for Semi-Autonomous Vehicles Using Level of Cooperativeness.
    Nguyen AT; Rath JJ; Lv C; Guerra TM; Lauber J
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of driver's age and side of impact on crash severity along urban freeways: a mixed logit approach.
    Haleem K; Gan A
    J Safety Res; 2013 Sep; 46():67-76. PubMed ID: 23932687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How Do Autonomous Vehicles Decide?
    Malik S; Khan MA; El-Sayed H; Khan J; Ullah O
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurophysiological mental fatigue assessment for developing user-centered Artificial Intelligence as a solution for autonomous driving.
    Giorgi A; Ronca V; Vozzi A; Aricò P; Borghini G; Capotorto R; Tamborra L; Simonetti I; Sportiello S; Petrelli M; Polidori C; Varga R; van Gasteren M; Barua A; Ahmed MU; Babiloni F; Di Flumeri G
    Front Neurorobot; 2023; 17():1240933. PubMed ID: 38107403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.