These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33419011)

  • 1. Absolute Measurement of Material Nonlinear Parameters Using Noncontact Air-Coupled Reception.
    Jeong H; Cho S; Zhang S; Li X
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity.
    Thiele S; Kim JY; Qu J; Jacobs LJ
    Ultrasonics; 2014 Aug; 54(6):1470-5. PubMed ID: 24836962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of absolute material nonlinearity with air-coupled ultrasonic receivers.
    Torello D; Selby N; Kim JY; Qu J; Jacobs LJ
    Ultrasonics; 2017 Nov; 81():107-117. PubMed ID: 28644964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receiver calibration and the nonlinearity parameter measurement of thick solid samples with diffraction and attenuation corrections.
    Jeong H; Barnard D; Cho S; Zhang S; Li X
    Ultrasonics; 2017 Nov; 81():147-157. PubMed ID: 28692853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of focused ultrasonic transducers and absolute measurements of fluid nonlinearity with diffraction and attenuation corrections.
    Li X; Zhang S; Jeong H; Cho S
    J Acoust Soc Am; 2017 Aug; 142(2):984. PubMed ID: 28863570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of surface roughness on the measurement of acoustic nonlinearity parameter of solids using contact piezoelectric transducers.
    Chakrapani SK; Howard A; Barnard D
    Ultrasonics; 2018 Mar; 84():112-118. PubMed ID: 29107873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic nonlinearity parameter measurements in a pulse-echo setup with the stress-free reflection boundary.
    Jeong H; Cho S; Zhang S; Li X
    J Acoust Soc Am; 2018 Apr; 143(4):EL237. PubMed ID: 29716280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the Responsivity of Air-Coupled Piezoelectric Transducers Using a Comparative Method: Theory and Experiments.
    Li X; Dai Z; Zhang G; Zhang S; Jeong H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3114-3125. PubMed ID: 34224350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.
    Zhang S; Li X; Jeong H; Hu H
    Ultrasonics; 2018 Sep; 89():118-125. PubMed ID: 29778060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement and In-Depth Analysis of Higher Harmonic Generation in Aluminum Alloys with Consideration of Source Nonlinearity.
    Jeong H; Shin H; Zhang S; Li X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Design of Annular Phased Array Transducers for Material Nonlinearity Determination in Pulse-Echo Ultrasonic Testing.
    Cho S; Jeong H; Park IK
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between second- and third-order acoustic nonlinear parameters in relative measurement.
    Ren G; Kim J; Jhang KY
    Ultrasonics; 2015 Feb; 56():539-44. PubMed ID: 25455194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensation of a Second Harmonic Wave Included in an Incident Ultrasonic Wave for the Precise Measurement of the Acoustic Nonlinearity Parameter.
    Song DG; Choi S; Kim T; Jhang KY
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic needle hydrophone calibration in air by a parabolic off-axis mirror focused beam using three-transducer reciprocity.
    Svilainis L; Chaziachmetovas A; Kaskonas P; Gomez Alvarez-Arenas TE
    Ultrasonics; 2023 Aug; 133():107025. PubMed ID: 37159982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation.
    Jeong H; Shin H; Zhang S; Li X
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffraction, attenuation, and source corrections for nonlinear Rayleigh wave ultrasonic measurements.
    Torello D; Thiele S; Matlack KH; Kim JY; Qu J; Jacobs LJ
    Ultrasonics; 2015 Feb; 56():417-26. PubMed ID: 25287976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Configuration to Determine the Nonlinear Parameter
    Callejas A; Rus G
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear standing waves for assessing material nonlinearity in thin samples.
    Baek S; Kim G; Kim JY
    Ultrasonics; 2024 Jun; 142():107385. PubMed ID: 38936288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Contact Shear Wave Generation and Detection Using High Frequency Air-Coupled Focused Transducer and Fiber Optic Based Sagnac Interferometer for Mechanical Characterization.
    Chen G; Xia J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cubic nonlinearity parameter measurement and material degradation detection using nonlinear ultrasonic three-wave mixing.
    Sampath S; Sohn H
    Ultrasonics; 2022 Apr; 121():106670. PubMed ID: 35026609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.