These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33419048)

  • 41. Localization of ecdysone receptor protein during colour pattern formation in wings of the butterfly Precis coenia (Lepidoptera: Nymphalidae) and co-expression with Distal-less protein.
    Koch PB; Merk R; Reinhardt R; Weber P
    Dev Genes Evol; 2003 Jan; 212(12):571-84. PubMed ID: 12536321
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wing venation and Distal-less expression in Heliconius butterfly wing pattern development.
    Reed RD; Gilbert LE
    Dev Genes Evol; 2004 Dec; 214(12):628-34. PubMed ID: 15449055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect.
    Otaki JM; Ogasawara T; Yamamoto H
    Zoolog Sci; 2005 Jun; 22(6):635-44. PubMed ID: 15988157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attack risk for butterflies changes with eyespot number and size.
    Ho S; Schachat SR; Piel WH; Monteiro A
    R Soc Open Sci; 2016 Jan; 3(1):150614. PubMed ID: 26909190
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence.
    Zhang L; Mazo-Vargas A; Reed RD
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10707-10712. PubMed ID: 28923944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenotypic Plasticity of the Mimetic Swallowtail Butterfly
    Shimajiri T; Otaki JM
    Insects; 2022 Jul; 13(7):. PubMed ID: 35886825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eyespot evolution: phylogenetic insights from Junonia and related butterfly genera (Nymphalidae: Junoniini).
    Kodandaramaiah U
    Evol Dev; 2009; 11(5):489-97. PubMed ID: 19754706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fractal dimension in butterflies' wings: a novel approach to understanding wing patterns?
    Castrejón-Pita AA; Sarmiento-Galán A; Castrejón-Pita JR; Castrejón-García R
    J Math Biol; 2005 May; 50(5):584-94. PubMed ID: 15614549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cautery-induced colour patterns in Precis coenia (Lepidoptera: Nymphalidae).
    Nijhout HF
    J Embryol Exp Morphol; 1985 Apr; 86():191-203. PubMed ID: 4031740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots.
    Özsu N; Monteiro A
    BMC Genomics; 2017 Oct; 18(1):788. PubMed ID: 29037153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Single-Wing Removal Method to Assess Correspondence Between Gene Expression and Phenotype in Butterflies: The Case of Distal-less.
    Adhikari K; Otaki JM
    Zoolog Sci; 2016 Feb; 33(1):13-20. PubMed ID: 26853864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colour pattern homology and evolution in Vanessa butterflies (Nymphalidae: Nymphalini): eyespot characters.
    Abbasi R; Marcus JM
    J Evol Biol; 2015 Nov; 28(11):2009-26. PubMed ID: 26249210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Long-Range Effects of Wing Physical Damage and Distortion on Eyespot Color Patterns in the Hindwing of the Blue Pansy Butterfly Junonia orithya.
    Otaki JM
    Insects; 2018 Dec; 9(4):. PubMed ID: 30572627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spontaneous long-range calcium waves in developing butterfly wings.
    Ohno Y; Otaki JM
    BMC Dev Biol; 2015 Mar; 15():17. PubMed ID: 25888365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles.
    Galant R; Skeath JB; Paddock S; Lewis DL; Carroll SB
    Curr Biol; 1998 Jul; 8(14):807-13. PubMed ID: 9663389
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination.
    Evans TM; Marcus JM
    Evol Dev; 2006; 8(3):273-83. PubMed ID: 16686638
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies.
    Özsu N; Chan QY; Chen B; Gupta MD; Monteiro A
    Dev Biol; 2017 Sep; 429(1):177-185. PubMed ID: 28668322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distal-less and spalt are distal organisers of pierid wing patterns.
    Wee JLQ; Das Banerjee T; Prakash A; Seah KS; Monteiro A
    Evodevo; 2022 Jun; 13(1):12. PubMed ID: 35659745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concerted evolution and developmental integration in modular butterfly wing patterns.
    Beldade P; Brakefield PM
    Evol Dev; 2003; 5(2):169-79. PubMed ID: 12622734
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies.
    Monteiro A; Chen B; Ramos DM; Oliver JC; Tong X; Guo M; Wang WK; Fazzino L; Kamal F
    J Exp Zool B Mol Dev Evol; 2013 Jul; 320(5):321-31. PubMed ID: 23633220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.