These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33419087)

  • 1. Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface.
    Ao M; Wang M; Zhu F
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33419087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drag Reduction Technology of Water Flow on Microstructured Surfaces: A Novel Perspective from Vortex Distributions and Densities.
    Liu C; Wang W; Hu X; Liu F
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and optimization of shark-inspired riblet geometries for low drag applications.
    Martin S; Bhushan B
    J Colloid Interface Sci; 2016 Jul; 474():206-15. PubMed ID: 27131153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drag reduction using bionic groove surface for underwater vehicles.
    Zheng S; Liang X; Li J; Liu Y; Tang J
    Front Bioeng Biotechnol; 2023; 11():1223691. PubMed ID: 37691898
    [No Abstract]   [Full Text] [Related]  

  • 5. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.
    Martin S; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the Yaw Angle on Air Drag Reduction for Various Riblet Surfaces.
    Zhou Z; Ou Z; Yan Z; Huang J; Lv X; He Y; Yuan W
    Langmuir; 2022 Dec; 38(50):15570-15578. PubMed ID: 36480432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.
    Dean B; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4775-806. PubMed ID: 20855320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the fluid drag reduction in scallop surface.
    Li B; Zhao Z; Meng L; Zhu L
    Eur Phys J E Soft Matter; 2024 Jun; 47(6):38. PubMed ID: 38829470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship Between Skin Scales and the Main Flow Field Around the Shortfin Mako Shark
    Zhang C; Gao M; Liu G; Zheng Y; Xue C; Shen C
    Front Bioeng Biotechnol; 2022; 10():742437. PubMed ID: 35547174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid drag reduction by penguin-mimetic laser-ablated riblets with yaw angles.
    Saito R; Yamasaki T; Tanaka H
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35797974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves.
    Liu W; Ni H; Wang P; Zhou Y
    Beilstein J Nanotechnol; 2020; 11():24-40. PubMed ID: 31976194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis.
    Liu C; Wang W; Hu X; Fang J; Liu F
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drag reduction by riblets.
    García-Mayoral R; Jiménez J
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1412-27. PubMed ID: 21382822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.
    Pu X; Li G; Huang H
    Biol Open; 2016 Apr; 5(4):389-96. PubMed ID: 26941105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic research on
    Wu L; Luo G; He F; Chen L; Wang S; Fan X
    RSC Adv; 2022 Aug; 12(34):22226-22235. PubMed ID: 36091191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An energy-efficient pathway to turbulent drag reduction.
    Marusic I; Chandran D; Rouhi A; Fu MK; Wine D; Holloway B; Chung D; Smits AJ
    Nat Commun; 2021 Oct; 12(1):5805. PubMed ID: 34608161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired surfaces for turbulent drag reduction.
    Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drag reduction: enticing turbulence, and then an industry.
    Spalart PR; McLean JD
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1556-69. PubMed ID: 21382831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.