These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33419134)

  • 1. A Time-Frequency Measurement and Evaluation Approach for Body Channel Characteristics in Galvanic Coupling Intrabody Communication.
    Wei Z; Wen Y; Gao Y; Yang M; Yang J; Pun SH; Vai MI; Du M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement Issues in Galvanic Intrabody Communication: Influence of Experimental Setup.
    Callejon MA; Reina-Tosina J; Naranjo-Hernandez D; Roa LM
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2724-32. PubMed ID: 26080377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Impulse Radio Intrabody Communication System for Wireless Body Area Networks.
    Cai Z; Seyedi M; Zhang W; Rivet F; Lai DTH
    J Med Biol Eng; 2017; 37(1):74-84. PubMed ID: 28286464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication.
    Callejón MA; Naranjo-Hernández D; Reina-Tosina J; Roa LM
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3263-9. PubMed ID: 22736633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equation environment coupling and interference on the electric-field intrabody communication channel.
    Xu R; Ng WC; Zhu H; Shan H; Yuan J
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2051-9. PubMed ID: 22562725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel.
    Li M; Song Y; Li W; Wang G; Bu T; Zhao Y; Hao Q
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.
    Gao YM; Wu ZM; Pun SH; Mak PU; Vai MI; Du M
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27049386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models.
    Gao YM; Zhang HF; Lin S; Jiang RX; Chen ZY; Lučev Vasić Ž; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2018 Jun; 17(1):71. PubMed ID: 29866126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galvanic coupling transmission in intrabody communication: a finite element approach.
    Amparo Callejón M; Reina-Tosina J; Naranjo-Hernández D; Roa LM
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):775-83. PubMed ID: 24216629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of human limb gestures on galvanic coupling intra-body communication for advanced healthcare system.
    Chen XM; Pun SH; Zhao JF; Mak PU; Liang BD; Vai MI
    Biomed Eng Online; 2016 May; 15(1):60. PubMed ID: 27230849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric-field intrabody communication channel modeling with finite-element method.
    Xu R; Zhu H; Yuan J
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):705-12. PubMed ID: 21095853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey on intrabody communications for body area network applications.
    Seyedi M; Kibret B; Lai DT; Faulkner M
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2067-79. PubMed ID: 23542945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bit error rate estimation for galvanic-type intra-body communication using experimental eye-diagram and jitter characteristics.
    Li JW; Chen XM; Pun SH; Mak PU; Gao YM; Vai MI; Du M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5195-8. PubMed ID: 24110906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path Loss Measurement and Channel Modeling with Muscular Tissue Characteristics.
    Qin YP; Zhang S; Liu HY; Liu YH; Li YZ; Peng X; Ma X; Li QL; Huang X
    Open Biomed Eng J; 2017; 11():1-8. PubMed ID: 28567127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Parametric Computational Analysis Into Galvanic Coupling Intrabody Communication.
    Callejon MA; Del Campo P; Reina-Tosina J; Roa LM; Callejon MA; Del Campo P; Reina-Tosina J; Roa LM
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1087-1096. PubMed ID: 28783652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparable Investigation of Characteristics for Implant Intra-Body Communication Based on Galvanic and Capacitive Coupling.
    Li M; Song Y; Hou Y; Li N; Jiang Y; Sulaman M; Hao Q
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1747-1758. PubMed ID: 31514153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Characterization of Capacitive Coupling Intrabody Communication in an In-Vehicle Scenario.
    Xu Y; Huang Z; Yang S; Wang Z; Yang B; Li Y
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of galvanic-coupled intrabody communication using the human body circuit model.
    Kibret B; Seyedi M; Lai DT; Faulkner M
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1196-206. PubMed ID: 25014932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling for intra-body communication with bone effect.
    Pun SH; Gao YM; Mak PU; Du M; Vai MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():693-6. PubMed ID: 19963722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide Frequency Characterization of Intra-Body Communication for Leadless Pacemakers.
    Maldari M; Albatat M; Bergsland J; Haddab Y; Jabbour C; Desgreys P
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3223-3233. PubMed ID: 32167883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.